【題目】用空間向量解決下列問題:如圖,在斜三棱柱中, 是的中點(diǎn), ⊥平面, , .
(1)求證: ;
(2)求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】試題分析:先由線面垂直的性質(zhì)可證明,由三角形中位線定理及,可證明,從而可以以為原點(diǎn),直線、、分別為、、軸建立空間直角坐標(biāo)系. (1)分別求出, ,可得,從而可得;(2)分別求出平面的一個法向量與平面的一個法向量,由空間向量夾角余弦公式可得結(jié)果.
試題解析:取的中點(diǎn),連結(jié),
⊥平面, , 平面,
, ,
、分別是、的中點(diǎn), ,
又, ,
所以,可以以為原點(diǎn),直線、、分別為、、軸建立空間直角坐標(biāo)系,設(shè),于是, , ,
, ,
(1), ,
,即.
(2)由(1)知, , , ,設(shè)是平面的一個法向量,由
,
,取,得, , ,
設(shè)是平面的一個法向量,由,
,取,得,
, , 又因?yàn)槎娼?/span>為銳二面角,所以,二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1的對角線AC1上任取一點(diǎn)P,以A為球心,AP為半徑作一個球.設(shè)AP=x,記該球面與正方體表面的交線的長度和為f(x),則函數(shù)f(x)的圖象最有可能的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某學(xué)校高三年級共名男生中隨機(jī)抽取名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于和之間,將測量結(jié)果按如下方式分成八組,第一組;第二組,,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,若第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.
()估計(jì)這所學(xué)校高三年級全體男生身高以上(含)的人數(shù).
()求第六組、第七組的頻率并補(bǔ)充完整頻率分布直方圖.(鉛筆作圖并用中性筆描黑).
()若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為、,求滿足的事件概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有兩個參加國際中學(xué)生交流活動的代表名額,為此該學(xué)校高中部推薦2男1女三名候選人,初中部也推薦了1男2女三名候選人。若從6名學(xué)生中人選2人做代表。
求:(1)選出的2名同學(xué)來自不同年相級部且性別同的概率;
(2)選出的2名同學(xué)都來自高中部或都來自初中部的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣e﹣x , 下列命題正確的有 . (寫出所有正確命題的編號)
①f(x)是奇函數(shù);
②f(x)在R上是單調(diào)遞增函數(shù);
③方程f(x)=x2+2x有且僅有1個實(shí)數(shù)根;
④如果對任意x∈(0,+∞),都有f(x)>kx,那么k的最大值為2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知從橢圓的一個焦點(diǎn)看兩短軸端點(diǎn)所成視角為,且橢圓經(jīng)過.
(1)求橢圓的方程;
(2)是否存在實(shí)數(shù),使直線與橢圓有兩個不同交點(diǎn),且(為坐標(biāo)原點(diǎn)),若存在,求出的值.不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的上下兩個焦點(diǎn)分別為, ,過點(diǎn)與軸垂直的直線交橢圓于、兩點(diǎn), 的面積為,橢圓的離心力為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知為坐標(biāo)原點(diǎn),直線: 與軸交于點(diǎn),與橢圓交于, 兩個不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高一年級有學(xué)生名,高二年級有學(xué)生名.現(xiàn)用分層抽樣方法(按高一年級、高二年級分二層)從該校的學(xué)生中抽取名學(xué)生,調(diào)查他們的數(shù)學(xué)學(xué)習(xí)能力.
(Ⅰ)高一年級學(xué)生中和高二年級學(xué)生中各抽取多少學(xué)生?
(Ⅱ)通過一系列的測試,得到這名學(xué)生的數(shù)學(xué)能力值.分別如表一和表二
表一:
高一年級 | |||||
人數(shù) |
表二:
高二年級 | |||||
人數(shù) |
①確定,并在答題紙上完成頻率分布直方圖;
②分別估計(jì)該校高一年級學(xué)生和高二年級學(xué)生的數(shù)學(xué)能力值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
③根據(jù)已完成的頻率分布直方圖,指出該校高一年級學(xué)生和高二年級學(xué)生的數(shù)學(xué)能力值分布特點(diǎn)的不同之處(不用計(jì)算,通過觀察直方圖直接回答結(jié)論)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com