【題目】已知函數(shù).

1)若在點(diǎn)處的切線與直線平行,討論的單調(diào)性;

2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

【答案】1)函數(shù)上單調(diào)遞增.2

【解析】

1)求出的導(dǎo)數(shù),求出切線的斜率,由兩直線平行可得的值,代入可得其單調(diào)性;

2)由,可得當(dāng)時(shí),恒成立,設(shè),對(duì)其求導(dǎo)可得

,令,則,對(duì)進(jìn)行分析可得,,分,進(jìn)行討論,可得實(shí)數(shù)的取值范圍.

解:(1)由已知得,則.

又因?yàn)橹本的斜率為2,

所以,解得.

所以,定義域?yàn)?/span>.

所以,

所以函數(shù)上單調(diào)遞增.

2)當(dāng)時(shí),恒成立,

即當(dāng)時(shí),恒成立.

,則.

,則.

當(dāng)時(shí),,,所以,

所以函數(shù)為增函數(shù).

所以,所以.

①當(dāng)時(shí),,所以當(dāng)時(shí),,

所以函數(shù)為增函數(shù),所以,

故對(duì),恒成立;

②當(dāng)時(shí),,當(dāng)時(shí),,

當(dāng),知,即.

所以函數(shù),為減函數(shù).

所以當(dāng)時(shí),.

從而,這與題意不符.

綜上,實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是( )

A.”是“”的充分不必要條件

B.函數(shù)的最小值為2

C.當(dāng)時(shí),命題“若,則”為真命題

D.命題“,”的否定是“,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系中, 為極點(diǎn),半徑為2的圓的圓心坐標(biāo)為.

1)求圓的極坐標(biāo)方程;

2)設(shè)直角坐標(biāo)系的原點(diǎn)與極點(diǎn)重合, 軸非負(fù)關(guān)軸與極軸重合,直線的參數(shù)方程為為參數(shù)),由直線上的點(diǎn)向圓引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓C過點(diǎn)

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)過橢圓C的右焦點(diǎn)的直線l與橢圓C交于A、B兩點(diǎn),且與圓:交于E、F兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C1ab0)的離心率為,右準(zhǔn)線方程為x4,AB分別是橢圓C的左,右頂點(diǎn),過右焦點(diǎn)F且斜率為kk0)的直線l與橢圓C相交于M,N兩點(diǎn)(其中,Mx軸上方).

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)線段MN的中點(diǎn)為D,若直線OD的斜率為,求k的值;

3)記△AFM,△BFN的面積分別為S1,S2,若,求M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率為,過左焦點(diǎn)且斜率為的直線交橢圓兩點(diǎn),線段的中點(diǎn)為,直線交橢圓兩點(diǎn).

(1)求橢圓的方程;

(2)求證:點(diǎn)在直線上;

(3)是否存在實(shí)數(shù),使得?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌餐飲公司準(zhǔn)備在10個(gè)規(guī)模相當(dāng)?shù)牡貐^(qū)開設(shè)加盟店,為合理安排各地區(qū)加盟店的個(gè)數(shù),先在其中5個(gè)地區(qū)試點(diǎn),得到試點(diǎn)地區(qū)加盟店個(gè)數(shù)分別為1,2,3,4,5時(shí),單店日平均營業(yè)額(萬元)的數(shù)據(jù)如下:

加盟店個(gè)數(shù)(個(gè))

1

2

3

4

5

單店日平均營業(yè)額(萬元)

10.9

10.2

9

7.8

7.1

(1)求單店日平均營業(yè)額(萬元)與所在地區(qū)加盟店個(gè)數(shù)(個(gè))的線性回歸方程;

(2)根據(jù)試點(diǎn)調(diào)研結(jié)果,為保證規(guī)模和效益,在其他5個(gè)地區(qū),該公司要求同一地區(qū)所有加盟店的日平均營業(yè)額預(yù)計(jì)值總和不低于35萬元,求一個(gè)地區(qū)開設(shè)加盟店個(gè)數(shù)的所有可能取值;

(3)小趙與小王都準(zhǔn)備加入該公司的加盟店,根據(jù)公司規(guī)定,他們只能分別從其他五個(gè)地區(qū)(加盟店都不少于2個(gè))中隨機(jī)選一個(gè)地區(qū)加入,求他們選取的地區(qū)相同的概率.

(參考數(shù)據(jù)及公式:,線性回歸方程,其中,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】xOy中,曲線的參數(shù)方程為t為參數(shù)).在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線,.

1)把的參數(shù)方程化為極坐標(biāo)方程;

2)設(shè)分別交,于點(diǎn)P,Q,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界互聯(lián)網(wǎng)大會(huì)是由中國倡導(dǎo)并每年在浙江省嘉興市桐鄉(xiāng)烏鎮(zhèn)舉辦的世界性互聯(lián)網(wǎng)盛會(huì),大會(huì)旨在搭建中國與世界互聯(lián)互通的國際平臺(tái)和國際互聯(lián)網(wǎng)共享共治的中國平臺(tái),讓各國在爭(zhēng)議中求共識(shí)在共識(shí)中謀合作在合作中創(chuàng)共贏.20191020日至22日,第六屆世界互聯(lián)網(wǎng)大會(huì)如期舉行,為了大會(huì)順利召開,組委會(huì)特招募了1 000名志愿者.某部門為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在歲內(nèi)的人數(shù)為15,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:

1)求,的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)這次大會(huì)志愿者主要通過現(xiàn)場(chǎng)報(bào)名和登錄大會(huì)官網(wǎng)報(bào)名,即現(xiàn)場(chǎng)和網(wǎng)絡(luò)兩種方式報(bào)名調(diào)查.100位志愿者的報(bào)名方式部分?jǐn)?shù)據(jù)如下表所示,完善下面的表格,通過計(jì)算說明能

否在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為選擇哪種報(bào)名方式與性別有關(guān)系”?

男性

女性

總計(jì)

現(xiàn)場(chǎng)報(bào)名

50

網(wǎng)絡(luò)報(bào)名

31

總計(jì)

50

參考公式及數(shù)據(jù):,其中.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案