【題目】已知△ABC的三個內(nèi)角A、B、C所對的邊分別為a,b,c,且4sin2 ﹣cos2A=
(1)求角A的大小,
(2)若a= ,cosB= ,求△ABC的面積.
【答案】
(1)解:∵sin2 = [1﹣cos(B+C)]= (1+cosA),cos2A=2cos2A﹣1
∴由4sin2 ﹣cos2A= ,得(2cosA﹣1)2=0,解之得cosA=
∵A是三角形的內(nèi)角,∴A=60°
(2)解:由cosB= ,得sinA= =
∵ ,∴b= =
又∵sinC=sin(A+B)=sinAcosB+cosAsinB=
∴△ABC的面積為S= absinC= × =
【解析】(1)利用三角恒等變換公式和誘導(dǎo)公式,化簡已知等式得到(2cosA﹣1)2=0,解之得cosA= ,結(jié)合A是三角形的內(nèi)角可得A=60°;(2)算出sinA= = ,結(jié)合正弦定理算出b= = .利用誘導(dǎo)公式與兩角和的正弦公式算出sinC=sin(A+B)= ,最后利用正弦定理的面積公式即可算出△ABC的面積.
【考點精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識,掌握正弦定理:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的半徑為2,圓心在軸的正半軸上,直線與圓C相切.
(1)求圓C的方程;
(2)過點的直線與圓C交于不同的兩點,且當(dāng)時,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)y=f(x)是減函數(shù),且對任意的a∈R,都有f(﹣a)+f(a)=0,若x、y滿足不等式f(x2﹣2x)+f(2y﹣y2)≤0,則當(dāng)1≤x≤4時,x﹣3y的最大值為( )
A.10
B.8
C.6
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱 中,側(cè)面和側(cè)面都是矩形, 是邊長為的正三角形, 分別為的中點.
(1)求證: 平面;
(2)求證:平面平面.
(3)若平面,求棱的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知美國蘋果公司生產(chǎn)某款iPhone手機的年固定成本為40萬美元,每生產(chǎn)1萬只還需另投入16萬美元.設(shè)蘋果公司一年內(nèi)共生產(chǎn)該款iPhone手機x萬只并全部銷售完,每萬只的銷售收入為R(x)萬美元,且R(x)=
(1)寫出年利潤W(萬美元)關(guān)于年產(chǎn)量x(萬只)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬只時,蘋果公司在該款iPhone手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面四邊形是矩形,平面,分別是的中點,.
(1)求證:平面;
(2)求二面角的大。
(3)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一兒童游樂場擬建造一個“蛋筒”型游樂設(shè)施,其軸截面如圖中實線所示. 是等腰梯形, 米, (在的延長線上, 為銳角). 圓與都相切,且其半徑長為米. 是垂直于的一個立柱,則當(dāng)的值設(shè)計為多少時,立柱最矮?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(1)求證:平面ABC1⊥平面A1ACC1;
(2)設(shè)D是線段BB1的中點,求三棱錐D﹣ABC1的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com