【題目】如圖,是等邊三角形, 邊上的動(dòng)點(diǎn)(含端點(diǎn)),記,.

(1)求的最大值;

(2)若,求的面積.

【答案】(1)當(dāng)α,即DBC中點(diǎn)時(shí),原式取最大值;(2).

【解析】

(1)由題意可得β=α+,根據(jù)三角函數(shù)和差公式及輔助角公式化簡(jiǎn)即可求出其最大值。

(2)根據(jù)三角函數(shù)差角公式求得sinα,再由正弦定理,求得AB的長(zhǎng)度進(jìn)而求得三角形面積。

(1)ABC是等邊三角形,得β=α+,

0≤α≤,故2cos-cos=2cos-cossin,

故當(dāng)α=,即DBC中點(diǎn)時(shí),原式取最大值

(2)cos β= ,得sin β=,

sin α=sin=sin βcos-cos βsin

由正弦定理,

AB= BD=×1= ,故SABDAB·BD·sin B=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B是單位圓O上的兩點(diǎn)(O為圓心),∠AOB=120°,點(diǎn)C是線段AB上不與A、B重合的動(dòng)點(diǎn).MN是圓O的一條直徑,則的取值范圍是( )

A. [,0) B. [,0] C. [,1) D. [,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCD—A1B1C1D1中,AB=BD=1,,AA1=BC=2,AD∥BC.

(1)證明:BD⊥平面ABB1A1

(2)比較四棱錐D—ABB1A1與四棱錐D—A1B1C1D1的體積的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫出下面平面幾何中的常見結(jié)論在立體幾何中也成立的所有序號(hào)______.

①四邊形內(nèi)角和為;

②垂直的兩條直線必相交;

③垂直同一條直線的兩條直線平行;

④平行同一條直線的兩條直線平行;

⑤四邊相等的四邊形,其對(duì)角線垂直;

⑥到三角形三邊距離相等的點(diǎn)是這個(gè)三角形的內(nèi)心;

⑦到一個(gè)角的兩邊距離相等的點(diǎn)必在這個(gè)角的角平分線上;

⑧在平面幾何中有一組平行線(至少3條)被兩條直線所截得的對(duì)應(yīng)線段成比例的結(jié)論,則這一結(jié)論可推廣到立體幾何中一組平行平面(至少3個(gè))被兩條直線所截得的對(duì)應(yīng)線段也成比例.”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)yfx)與函數(shù)ygx)的圖象如圖所示,則函數(shù)yfxgx)的圖象可能是下面的( 。

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠經(jīng)過節(jié)能降耗技術(shù)改進(jìn)后生產(chǎn)甲產(chǎn)品x噸與相應(yīng)的生產(chǎn)耗能y噸間的幾組數(shù)據(jù)

1)試畫出此表中數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖

2)若變量yx線性相關(guān) ,試求出線性回歸方程y = b x + a ;

3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)耗能為90噸標(biāo)準(zhǔn)煤 ,試根據(jù)(2)求出的線性回歸方程 ,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)耗能比技改前降低多少噸標(biāo)準(zhǔn)煤?

(參考公式,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1的參數(shù)方程為(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.

(1)求曲線C1的極坐標(biāo)方程和C2的直角坐標(biāo)方程;

(2)射線OP:(其中)與C2交于P點(diǎn),射線OQ:與C2交于Q點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)對(duì)某校高二文科學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù).

x

6

8

10

12

y

2

3

5

6

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(3)試根據(jù)(2)中求出的線性回歸方程,預(yù)測(cè)記憶力為14的學(xué)生的判斷力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若在區(qū)間上單調(diào)遞增,求m的取值范圍;

2)求在區(qū)間上的最小值;

3)討論在區(qū)間上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案