對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:

||AB||=|x2-x1|+|y2-y1|.

給出下列三種說(shuō)法:

(1)若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;

(2)在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2

(3)在△ABC中,||AC||+||CB||>||AB||.

其中正確的個(gè)數(shù)為

[  ]

A.0

B.1

C.2

D.3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:||AB||=|x2-x1|+|y2-y1|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90o,則||AC||2+||CB||2=||AB||2
③在△ABC中,||AC||+||CB||>||AB||.
其中真命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1)、B(x2,y2),定義它們之間的一種“距離”:‖AB‖=|x1-x2|+|y1-y2|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則‖AC‖+‖CB‖=‖AB‖;
②在△ABC中,若∠C=90°,則‖AC‖+‖CB‖=‖AB‖;
③在△ABC中,‖AC‖+‖CB‖>‖AB‖.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•泉州模擬)將邊長(zhǎng)為1的正三角形ABC按如圖所示的方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合.記邊AB所在直線的傾斜角為θ,已知θ∈[0,
π
3
]

(Ⅰ)試用θ表示
BC
的坐標(biāo)(要求將結(jié)果化簡(jiǎn)為形如(cosα,sinα)的形式);
(Ⅱ)定義:對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)P(x1,y1)、Q(x2,y2),稱|x1-x2|+|y1-y2|為P、Q兩點(diǎn)間的“taxi距離”,并用符號(hào)|PQ|表示.試求|BC|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:||AB||=|x2-x1|+|y2-y1|給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90°,則||AC||2+||CB||2=||AB||2
③在△ABC中,||AC||+||CB||>||AB||
其中真命題為
寫(xiě)出所有真命題的代號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年福建省高二第二學(xué)期半期考試數(shù)學(xué)(理科)試題 題型:選擇題

對(duì)于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x,y)、B(x,y),定義它們之間的一種“距離”:

AB‖=︱xx︱+︱yy︱。給出下列三個(gè)命題:

①若點(diǎn)C在線段AB上,則‖AC‖+‖CB‖=‖AB‖;

②在△ABC中,若∠C=90°,則‖AC+‖CB=‖AB

③在△ABC中,‖AC‖+‖CB‖>‖AB‖.

其中真命題的個(gè)數(shù)為(    )

A.1個(gè)                           B.2個(gè)                    C.3個(gè)                 D.4個(gè)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案