【題目】某公司為了解用戶對其產品的滿意度,從某地區(qū)隨機調查了100個用戶,得到用戶對產品的滿意度評分頻率分布表如下:
組別 | 分組 | 頻數 | 頻率 |
第一組 | 10 | 0.1 | |
第二組 | 20 | 0.2 | |
第三組 | 40 | 0.4 | |
第四組 | 25 | 0.25 | |
第五組 | 5 | 0.05 | |
合計 | 100 | 1 |
(1)根據上面的頻率分布表,估計該地區(qū)用戶對產品的滿意度評分超過70分的概率;
(2)請由頻率分布表中數據計算眾數、中位數,平均數,根據樣本估計總體的思想,若平均分低于75分,視為不滿意.判斷該地區(qū)用戶對產品是否滿意?
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱的各棱長均為2,側面 底面,側棱與底面所成的角為.
(Ⅰ)求直線與底面所成的角;
(Ⅱ)在線段上是否存在點,使得平面平面?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“雙十一”期間,某淘寶店主對其商品的上架時間(小時)和銷售量(件)的關系作了統計,得到了如下數據并研究.
上架時間 | 2 | 4 | 6 | 8 | 10 | 12 |
銷售量 | 64 | 138 | 205 | 285 | 360 | 430 |
(1)求表中銷售量的平均數和中位數;
(2)① 作出散點圖,并判斷變量與是否線性相關?若研究的方案是先根據前5組數據求線性回歸方程,再利用第6組數據進行檢驗,求線性回歸方程;
②若根據①中線性回歸方程得到商品上架12小時的銷售量的預測值與檢測值不超過3件,則認為得到的線性回歸方程是理想的,試問:①中的線性回歸方程是否理想.
附:線性回歸方程中, .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了保護環(huán)境,某工廠在政府部門的支持下,進行技術改進:把二氧化碳轉化為某種化工產品,經測算,該處理成本y(萬元)與處理量x(噸)之間的函數關系可近似地表示為:,且每處理一噸二氧化碳可得價值為20萬元的某種化工產品.
(1)當時,判斷該技術改進能否獲利?如果能獲利,求出最大利潤;如果不能獲利,則國家至少需要補貼多少萬元,該工廠才不虧損?
(2)當處理量為多少噸時,每噸的平均處理成本最少.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題對任意實數,不等式恒成立;命題方程表示焦點在軸上的雙曲線.
(1)若命題為真命題,求實數的取值范圍;
(2)若命題:“”為真命題,且“”為假命題,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】自2017年2月底,90多所自主招生試點高校將陸續(xù)出臺2017年自主招生簡章,某校高三年級選取了在期中考試中成績優(yōu)異的100名學生作為調查對象,對是否準備參加2017年的自主招生考試進行了問卷調查,其中“準備參加”“不準備參加”和“待定”的人數如表:
準備參加 | 不準備參加 | 待定 | |
男生 | 30 | 6 | 15 |
女生 | 15 | 9 | 25 |
(1)在所有參加調查的同學中,在三種類型中用分層抽樣的方法抽取20人進行座談交流,則在“準備參加”“不準備參加”和“待定”的同學中應各抽取多少人?
(2)在“準備參加”的同學中用分層抽樣方法抽取6人,從這6人中任意抽取2人,求至少有一名女生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】九章算術中將底面為長方形,且有一條側棱與底面垂直的四棱錐稱之為“陽馬”現有一陽馬,其正視圖和側視圖是如圖所示的直角三角形若該陽馬的頂點都在同一個球面上,且該球的表面積為,則該“陽馬”的體積為__.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(Ⅰ)計算:
①若是橢圓長軸的兩個端點,,則______;
②若是橢圓長軸的兩個端點,,則______;
③若是橢圓長軸的兩個端點,,則______.
(Ⅱ)觀察①②③,由此可得到:若是橢圓長軸的兩個端點,為橢圓上任意一點,則?并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商店經營的消費品進價每件14元,月銷售量(百件)與銷售價格p(元)的關系如下圖,每月各種開支2000元.
(1)寫出月銷售量(百件)與銷售價格p(元)的函數關系;
(2)寫出月利潤y(元)與銷售價格p(元)的函數關系:
(3)當商品價格每件為多少元時,月利潤最大?并求出最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com