【題目】已知集合,其中,是函數(shù)定義城內(nèi)任意不相等的兩個實數(shù).

1)若,同時,求證:

2)判斷是否在集合A中,并說明理由;

3)設(shè)函數(shù)的定義域為B,函數(shù)的值域為C.函數(shù)滿足以下3個條件:

,②,③.試確定一個滿足以上3個條件的函數(shù)要對滿足的條件進行說明).

【答案】1)見解析(2不在集合A中,見解析(3)見解析

【解析】

1)設(shè),,是函數(shù)定義域內(nèi)任意不相等的兩個實數(shù).

根據(jù)集合A的定義,可驗證得,可得證;

2的定義域為R.,,驗證得,可得結(jié)論;

3)可取函數(shù),;或,函數(shù),分別驗證三個條件可以滿足,得出結(jié)論.

1)設(shè),,是函數(shù)定義域內(nèi)任意不相等的兩個實數(shù).

因為,所以①,同理②,①+②,得

,即

,

所以,

2的定義域為R.,,

,,

因為,所以,

所以不在集合A;

3;

①設(shè)內(nèi)任意不相等的兩個實數(shù),

,

所以,所以

,

另外還有函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在二項式的展開式中,前三項系數(shù)的絕對值成等差數(shù)列。

(1)求展開式的第四項;

(2)求展開式的常數(shù)項;

(3)求展開式中各項的系數(shù)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,左頂點到直線的距離,為坐標(biāo)原點.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于兩點,若以為直徑的圓經(jīng)過坐標(biāo)原點,證明:到直線的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、是平面上任意三點,且,.的最小值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓)的上頂點為,圓經(jīng)過點

(1)求橢圓的方程;

(2)過點作直線交橢圓,兩點,過點作直線的垂線交圓于另一點.若△PQN的面積為3,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若函數(shù)為偶函數(shù),求實數(shù)的值;

2)存在實數(shù),使得不等式成立,求實數(shù)的取值范圍;

3)若方程上有且僅有兩個不相等的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點處的切線為.

(1)當(dāng),求證函數(shù)的圖像(除切點外)均為切線的下方

(2)當(dāng),的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查患胃病是否與生活不規(guī)律有關(guān),在患胃病與生活不規(guī)律這兩個分類變量的計算中,下列說法正確的是(

A. 越大,患胃病與生活不規(guī)律沒有關(guān)系的可信程度越大.

B. 越大,患胃病與生活不規(guī)律有關(guān)系的可信程度越小.

C.若計算得 ,經(jīng)查臨界值表知 ,則在 個生活不規(guī)律的人中必有 人患胃病.

D.從統(tǒng)計量中得知有 的把握認為患胃病與生活不規(guī)律有關(guān),是指有 的可能性使得推斷出現(xiàn)錯誤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上饒市在某次高三適應(yīng)性考試中對數(shù)學(xué)成績數(shù)據(jù)統(tǒng)計顯示,全市10000名學(xué)生的成績近似服從正態(tài)分布,現(xiàn)某校隨機抽取了50名學(xué)生的數(shù)學(xué)成績分析,結(jié)果這50名學(xué)生的成績?nèi)拷橛?/span>85分到145分之間,現(xiàn)將結(jié)果按如下方式分為6組,第一組,第二組,,第六組,得到如圖所示的頻率分布直方圖:

1)試由樣本頻率分布直方圖估計該校數(shù)學(xué)成績的平均分?jǐn)?shù);

2)若從這50名學(xué)生中成績在125分(含125分)以上的同學(xué)中任意抽取3人,該3人在全市前13名的人數(shù)記為,求的概率.

附:若,則,,.

查看答案和解析>>

同步練習(xí)冊答案