如圖所示圖形中是四棱錐三視圖的是( 。
A、
B、
C、
D、
考點(diǎn):簡單空間圖形的三視圖
專題:空間位置關(guān)系與距離
分析:直接判斷四個(gè)選項(xiàng),幾何體的形狀,即可得到結(jié)果.
解答: 解:幾何體是圓錐,∴A不正確;
的幾何體是長方體,∴B不正確;
的幾何體是三棱錐,∴C不正確;
是四棱錐,滿足題意,∴D正確;
故選:D.
點(diǎn)評(píng):本題考查三視圖復(fù)原幾何體的形狀的判斷,考查空間想象能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出b的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(1-3x)-4的導(dǎo)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果x>y>0,則
xyyx
xxyy
=( 。
A、(x-y)
y
x
B、(x-y)
x
y
C、(
x
y
)y-x
D、(
x
y
)x-y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線的中心為原點(diǎn)O,焦點(diǎn)在x軸上,兩條漸近線分別為l1,l2,經(jīng)過右焦點(diǎn)F且垂直于l1的直線分別交l1,l2于A,B兩點(diǎn),已知
BF
FA
同向,且丨
AB
丨是丨
OA
丨,丨
OB
丨的等差中項(xiàng),則l1,l2的方程是( 。
A、y=±
1
2
x
B、y=±2x
C、y=±
4
3
x
D、y=±
3
4
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1F2,左、右頂點(diǎn)分別為A1,A2,T(1,
3
2
)為橢圓上一點(diǎn),且TF2垂直于x軸.

(Ⅰ)求橢圓E的方程;
(Ⅱ)給出命題:“已知P是橢圓E上異于A1,A2的一點(diǎn),直線 A1P,A2P分別交直線l:x=t(t為常數(shù))于不同兩點(diǎn)M,N,點(diǎn)Q在直線l上.若直線PQ與橢圓E有且只有一個(gè)公共點(diǎn)P,則Q為線段MN的中點(diǎn)”,寫出此命題的逆命題,判斷你所寫出的命題的真假,并加以證明;
(Ⅲ)試研究(Ⅱ)的結(jié)論,根據(jù)你的研究心得,在圖2中作出與該雙曲線有且只有一個(gè)公共點(diǎn)S的直線m,并寫出作圖步驟.注意:所作的直線不能與雙曲線的漸近線平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=tan(2x-
π
3
),x≠
12
+
2
(k∈Z)
的周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,等邊△ABC中,AB=3,O為中心,過O的直線交AB于M,交AC于N,設(shè)∠AOM=θ(0≤θ≤120°),當(dāng)θ分別為何值時(shí),
1
OM
+
1
ON
取得最大和最小值,并求出其最大和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:4x-3×2x-4=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案