【題目】設f(x)=ax3+bx+c為奇函數(shù)其圖象在點(1,f(1))處的切線與直線x-6y-7=0垂直,導函數(shù)f/(x)的最小值為-12

(1)求a,b,c的值

(2)求函數(shù)極大值和極小值.

【答案】(1)a=2,b=﹣12,c=0(2)極大值是8,極大值是﹣8

【解析】

(1)先根據(jù)奇函數(shù)求出c的值,再根據(jù)導函數(shù)f'(x)的最小值求出b的值,最后依據(jù)在x=1處的導數(shù)等于切線的斜率求出c的值即可;

(2)先求導數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式fˊ(x)0和fˊ(x)0,求得區(qū)間即為單調(diào)區(qū)間,進而得到函數(shù)的極值

(1)∵ f(x)為奇函數(shù),

∴ f(﹣x)=﹣f(x)

即﹣ax3﹣bx+c=﹣ax3﹣bx﹣c

∴ c=0

∵ f'(x)=3ax2+b的最小值為﹣12

∴ b=﹣12

又直線x﹣6y﹣7=0的斜率為因此,f'(1)=3a+b=﹣6

∴ a=2,b=﹣12,c=0.

(2)f(x)=2x3﹣12x.f′(x)=6(x+)(x﹣),列表如下:

所以函數(shù)f(x)的單調(diào)增區(qū)間是(﹣∞,)和(,+∞),

f(x)在[﹣1,3]上的極大值是f()=8,最小值是f()=﹣8

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=f(x)的圖象如圖所示.觀察圖象可知函數(shù)y=f(x)的定義域、值域分別是( 。

A.[﹣5,0]∪[2,6),[0,5]
B.[﹣5,6),[0,+∞)
C.[﹣5,0]∪[2,6),[0,+∞)
D.[﹣5,+∞),[2,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對任意實數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)當t∈[﹣1,3]時,求y=f(2t)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】觀察下列各等式(i為虛數(shù)單位):

(cos 1+isin 1)(cos 2+isin 2)=cos 3+isin 3;

(cos 3+isin 3)(cos 5+isin 5)=cos 8+isin 8;

(cos 4+isin 4)(cos 7+isin 7)=cos 11+isin 11;

(cos 6+isin 6)(cos 6+isin 6)=cos 12+isin 12.

f(x)=cos x+isin x

猜想出一個用f (x)表示的反映一般規(guī)律的等式,并證明其正確性;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的x值為7,第二次輸入的x值為9,則第一次,第二次輸出的a值分別為( 。

A.0,0
B.1,1
C.0,1
D.1,0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.(12分)
(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點的橫坐標伸長為原來的2倍(縱坐標不變),再將得到的圖象向左平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)在[﹣ ]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a∈R,若f(x)=(x+ )ex在區(qū)間(0,1)上只有一個極值點,則a的取值范圍為(
A.a>0
B.a≤1
C.a>1
D.a≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)的右焦點為F,直線y= x與雙曲線相交于A、B兩點.若AF⊥BF,則雙曲線的漸近線方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集U=R,若集合M={y|y= },N={x|y=lg },則(CUM)∩N=(
A.(﹣3,2)
B.(﹣3,0)
C.(﹣∞,1)∪(4,+∞)
D.(﹣3,1)

查看答案和解析>>

同步練習冊答案