【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ ),其中0<ω<3,已知f( )=0.(12分)
(Ⅰ)求ω;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再將得到的圖象向左平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)在[﹣ , ]上的最小值.
【答案】解:(Ⅰ)函數(shù)f(x)=sin(ωx﹣ )+sin(ωx﹣ )
=sinωxcos ﹣cosωxsin ﹣sin( ﹣ωx)
= sinωx﹣ cosωx
= sin(ωx﹣ ),
又f( )= sin( ω﹣ )=0,
∴ ω﹣ =kπ,k∈Z,
解得ω=6k+2,
又0<ω<3,
∴ω=2;
(Ⅱ)由(Ⅰ)知,f(x)= sin(2x﹣ ),
將函數(shù)y=f(x)的圖象上各點的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),得到函數(shù)y= sin(x﹣ )的圖象;
再將得到的圖象向左平移 個單位,得到y(tǒng)= sin(x+ ﹣ )的圖象,
∴函數(shù)y=g(x)= sin(x﹣ );
當(dāng)x∈[﹣ , ]時,x﹣ ∈[﹣ , ],
∴sin(x﹣ )∈[﹣ ,1],
∴當(dāng)x=﹣ 時,g(x)取得最小值是﹣ × =﹣ .
【解析】(Ⅰ)利用三角恒等變換化函數(shù)f(x)為正弦型函數(shù),根據(jù)f( )=0求出ω的值;
(Ⅱ)寫出f(x)解析式,利用平移法則寫出g(x)的解析式,求出x∈[﹣ , ]時g(x)的最小值.
【考點精析】解答此題的關(guān)鍵在于理解兩角和與差的正弦公式的相關(guān)知識,掌握兩角和與差的正弦公式:,以及對函數(shù)y=Asin(ωx+φ)的圖象變換的理解,了解圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=a|x﹣b|+c滿足①函數(shù)f(x)的圖象關(guān)于x=1對稱;②在R上有大于零的最大值;③函數(shù)f(x)的圖象過點(0,1);④a,b,c∈Z,試寫出一組符合要求的a,b,c的值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】商家生產(chǎn)一種產(chǎn)品,需要先進(jìn)行市場調(diào)研,計劃對北京、上海、廣州三地進(jìn)行市場調(diào)研,待調(diào)研結(jié)束后決定生產(chǎn)的產(chǎn)品數(shù)量,下列四種方案中最可取的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費用y(萬元)有如下統(tǒng)計資料:
i | 1 | 2 | 3 | 4 | 5 | =90,=112.3 |
xi | 2 | 3 | 4 | 5 | 6 | |
yi | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 | |
xi yi | 4.4 | 11.4 | 22.0 | 32.5 | 42.0 |
若由資料知,y對x呈線性相關(guān)關(guān)系,試求:
(1)回歸直線方程;
(2)估計使用年限為10年時,維修費用約是多少
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=ax3+bx+c為奇函數(shù)其圖象在點(1,f(1))處的切線與直線x-6y-7=0垂直,導(dǎo)函數(shù)f/(x)的最小值為-12
(1)求a,b,c的值
(2)求函數(shù)極大值和極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,下列結(jié)論中錯誤的是
A. , f()=0
B. 函數(shù)y=f(x)的圖像是中心對稱圖形
C. 若是f(x)的極小值點,則f(x)在區(qū)間(-∞,)單調(diào)遞減
D. 若是f(x)的極值點,則()=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=log3(x2+2x﹣8)的定義域為A,函數(shù)g(x)=x2+(m+1)x+m.
(1)若m=﹣4時,g(x)≤0的解集為B,求A∩B;
(2)若存在 使得不等式g(x)≤﹣1成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中的更相減損法的思路與圖相似.執(zhí)行該程序框圖,若輸入的a,b分別為14,18,則輸出的a=( )
A.2
B.4
C.6
D.8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com