已知函數(shù)(m、t∈N*),其導(dǎo)函數(shù)為設(shè)數(shù)列的前n項和

   (I)求mt

   (II)求數(shù)列的通項公式.

解:(I)由已知:

   (II)由(I)知            

  

                                           

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題設(shè)有(1)(2)(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)已知矩陣M=
1a
b1
,N=
c2
0d
,且MN=
20
-20
,
(Ⅰ)求實數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對應(yīng)的線性變換下的像的方程.
(2)在直角坐標系xoy中,直線l的參數(shù)方程為
x=3-
2
2
t
y=
5
-
2
2
t
(t為參數(shù)).在極坐標系(與直角坐標系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ

(Ⅰ)求圓C的直角坐標方程;(Ⅱ)設(shè)圓C與直線l交于點A、B,若點P的坐標為(3,
5
)
,
求|PA|+|PB|.
(3)已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(t)對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+3xy(x+y+2)+k(x+y)+3,k為常數(shù),且f(1)=1,f(2)=17.
(1)若t為正整數(shù),求f(t)的解析式(已知公式:12+22+32+…+n2=
16
n(n+1)(2n+1)

(2)求滿足f(t)=t的所有正整數(shù)t;
(3)若t為正整數(shù),且t≥4時,f(t)≥mt2+(4m+1)+3m恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2mx+n
(m,n為常數(shù)),且關(guān)于x的方程f(x)=x-12有兩個實數(shù)根x1=3,x2=4.
(1)求m,n的值;
(2)設(shè)t>1,試解關(guān)于x的不等式:(2-x)f(x)<(t+1)x-t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•青島一模)已知向量
m
=(
3
sin2x+t,cosx)
,
n
=(1,2cosx)
,設(shè)函數(shù)f(x)=
m
n

(Ⅰ)若cos(2x-
π
3
)=
1
2
,且
m
n
,求實數(shù)t的值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,若f(A)=3,b=1,且△ABC的面積為
3
2
,實數(shù)t=1,求邊長a的值.

查看答案和解析>>

同步練習(xí)冊答案