【題目】某校為了推動(dòng)數(shù)學(xué)教學(xué)方法的改革,學(xué)校將高一年級部分生源情況基本相同的學(xué)生分成甲、乙兩個(gè)班,每班各40人,甲班按原有模式教學(xué),乙班實(shí)施教學(xué)方法改革.經(jīng)過一年的教學(xué)實(shí)驗(yàn),將甲、乙兩個(gè)班學(xué)生一年來的數(shù)學(xué)成績?nèi)∑骄鶖?shù)再取整,繪制成如下莖葉圖,規(guī)定不低于85分(百分制)為優(yōu)秀,甲班同學(xué)成績的中位數(shù)為74.

(1)求的值和乙班同學(xué)成績的眾數(shù);

(2)完成表格,若有以上的把握認(rèn)為“數(shù)學(xué)成績優(yōu)秀與教學(xué)改革有關(guān)”的話,那么學(xué)校將擴(kuò)大教學(xué)改革面,請問學(xué)校是否要擴(kuò)大改革面?說明理由.

【答案】(Ⅰ);(Ⅱ)見解析.

【解析】【試題分析】(1)利用中位數(shù)為可求得.有莖葉圖可知乙班的眾數(shù)為.(2)填寫好表格后計(jì)算得,故有以上的把握認(rèn)為有關(guān).

【試題解析】

(Ⅰ)由甲班同學(xué)成績的中位數(shù)為,

所以,得

由莖葉圖知,乙班同學(xué)成績的眾數(shù)為

(Ⅱ)

依題意知(表格2分,計(jì)算4分)

90%以上的把握認(rèn)為“數(shù)學(xué)成績優(yōu)秀與教學(xué)改革有關(guān)”,學(xué)?梢詳U(kuò)大教學(xué)改革面.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,已知曲線的參數(shù)方程為,(為參數(shù),且),曲線的極坐標(biāo)方程為

)求的極坐標(biāo)方程與的直角坐標(biāo)方程.

)若上任意一點(diǎn),過點(diǎn)的直線于點(diǎn),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對該校200名高三學(xué)生平均每天課外體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

將學(xué)生日均課外體育鍛煉時(shí)間在的學(xué)生評價(jià)為“課外體育達(dá)標(biāo)”.

(1)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;

課外體育不達(dá)標(biāo)

課外體育達(dá)標(biāo)

合計(jì)

20

110

合計(jì)

(2)通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?

參考格式:,其中

0.025

0.15

0.10

0.005

0.025

0.010

0.005

0.001

5.024

2.072

6.635

7.879

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程

(2)已知與直線平行的直線過點(diǎn),且與曲線交于兩點(diǎn),試求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】最近,“百萬英雄”,“沖頂大會(huì)”等一些闖關(guān)答題類游戲風(fēng)靡全國,既能答題,又能學(xué)知識,還能掙獎(jiǎng)金。若某闖關(guān)答題一輪共有4類題型,選手從前往后逐類回答,若中途回答錯(cuò)誤,立馬淘汰只能觀戰(zhàn);若能堅(jiān)持到4類題型全部回答正確,就能分得現(xiàn)金并獲得一枚復(fù)活幣。每一輪闖關(guān)答題順序?yàn)椋?.文史常識類;2.數(shù)理常識類;3.生活常識類;4.影視藝術(shù)常識類,現(xiàn)從全省高中生中調(diào)查了100位同學(xué)的答題情況統(tǒng)計(jì)如下表:

(Ⅰ)現(xiàn)用樣本的數(shù)據(jù)特征估算整體的數(shù)據(jù)特征,從全省高中生挑選4位同學(xué),記為4位同學(xué)獲得獎(jiǎng)金的總?cè)藬?shù),求的分布列和期望.

(Ⅱ)若王同學(xué)某輪闖關(guān)獲得的復(fù)活幣,系統(tǒng)會(huì)在下一輪游戲中自動(dòng)使用,即下一輪重新進(jìn)行闖關(guān)答題時(shí),若王同學(xué)在某一類題型中回答錯(cuò)誤,自動(dòng)復(fù)活一次,視為答對該類題型。請問:仍用樣本的數(shù)據(jù)特征估算王同學(xué)的數(shù)據(jù)特征,那么王同學(xué)在獲得復(fù)活幣的下一輪答題游戲中能夠最終獲得獎(jiǎng)金的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以、、、為頂點(diǎn)的五面體中,平面平面,,四邊形為平行四邊形,且.

(1)求證:

(2)若,,直線與平面所成角為,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,.

(1)證明:;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平行四邊形中,,,,、分別為的中點(diǎn),現(xiàn)把平行四邊形1沿折起如圖2所示,連接、

(1)求證:;

(2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為的菱形, .

(1)求證:平面平面;

(2)若,求銳角二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案