【題目】一個(gè)盒子里裝有標(biāo)號(hào)為1,2,3,…,5的5張標(biāo)簽,現(xiàn)隨機(jī)地從盒子里無(wú)放回地抽取兩張標(biāo)簽.記X為兩張標(biāo)簽上的數(shù)字之和.
(1)求X的分布列.
(2)求X的期望E(X)和方差D(X).
【答案】解。1)由題意知X的值可以是3,4,5,6,7,8,9.
P(X=3)==,
P(X=4)==,
P(X=5)==,
P(X=6)==,
P(X=7)==,
P(X=8)==,
P(X=9)==,
∴X的分布列為
X | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
P |
(2)由X的分布列,得:
E(X)=3x+4+5x+6x+7x+8×+9x=6,
D(X)=(3﹣6)2×+(3﹣6)2×+(4﹣6)2×+(5﹣6)2×+(6﹣6)2×+(7﹣6)2×+(8﹣6)2×+(9﹣6)2×=3.
【解析】由題意知X的值可以是3,4,5,6,7,8,9.分別求出相應(yīng)的概率,由此能求出X的分布列期望EX和方差DX.
【考點(diǎn)精析】本題主要考查了離散型隨機(jī)變量及其分布列的相關(guān)知識(shí)點(diǎn),需要掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍.又點(diǎn)P(4,1)在橢圓上,求該橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求下列曲線的標(biāo)準(zhǔn)方程:
(1)與橢圓x2+4y2=16有相同焦點(diǎn),過(guò)點(diǎn)p( , ),求此橢圓標(biāo)準(zhǔn)方程;
(2)求以原點(diǎn)為頂點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且焦點(diǎn)在直線3x﹣4y﹣12=0的拋物線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線過(guò)點(diǎn)P(﹣3 , 4),它的漸近線方程為y=±x.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)F1和F2為該雙曲線的左、右焦點(diǎn),點(diǎn)P在此雙曲線上,且|PF1||PF2|=41,求∠F1PF2的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1、F2分別是雙曲線 ﹣ =1(a>0,b>0)的左、右焦點(diǎn),以坐標(biāo)原點(diǎn)O為圓心,OF1為半徑的圓與雙曲線在第一象限的交點(diǎn)為P,則當(dāng)△PF1F2的面積等于a2時(shí),雙曲線的離心率為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩船駛向一個(gè)不能同時(shí)停泊兩艘船的碼頭,它們?cè)谝惶於男r(shí)內(nèi)到達(dá)該碼頭的時(shí)刻是等可能的.如果甲船停泊時(shí)間為1小時(shí),乙船停泊時(shí)間為2小時(shí),求它們中的任意一艘都不需要等待碼頭空出的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形.
(1)求證:BD⊥平面PAC;
(2)若PA=AB,求PB與AC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為 , 焦距為2 , 過(guò)點(diǎn)D(1,0)且不過(guò)點(diǎn)E(2,1)的直線l與橢圓C交于A,B兩點(diǎn),直線AE與直線x=3交于點(diǎn)M.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若AB垂直于x軸,求直線MB的斜率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C1:x2+y2﹣3x﹣3y+3=0,圓C2:x2+y2﹣2x﹣2y=0,求兩圓的公共弦所在的直線方程及弦長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com