【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形.
(1)求證:BD⊥平面PAC;
(2)若PA=AB,求PB與AC所成角的余弦值.

【答案】證明:(1)∵四邊形ABCD是菱形,∴AC⊥BD,
又∵PA⊥平面ABCD,∴PA⊥BD,
∴BD⊥平面PAC.
解:(2)設AC∩BD=O,∵∠BAD=60°,PA=PB=2,
∴BO=1,AO=CO=
如圖,以O為坐標原點,建立空間直角坐標系,
則P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0),
=(1,,﹣2),=(0,2,0),
設PB與AC所成角為θ,
則cosθ===
∴PB與AC所成角的余弦值為

【解析】(1)推導出AC⊥BD,PA⊥BD,由此能證明BD⊥平面PAC.
(2)以O為坐標原點,建立空間直角坐標系,利用向量法能求出PB與AC所成角的余弦值.
【考點精析】根據(jù)題目的已知條件,利用異面直線及其所成的角和直線與平面垂直的判定的相關知識可以得到問題的答案,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系;一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設集合A=[0,),B=[ , 1],函數(shù)f (x)= , 若x0∈A,且f[f (x0)]∈A,則x0的取值范圍是( 。
A.(0,]
B.[ , ]
C.( ,
D.[0,]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且.

)求函數(shù)的解析式;

)若對任意,都有,求的取值范圍;

)證明函數(shù)的圖象在圖象的下方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子里裝有標號為1,2,3,…,5的5張標簽,現(xiàn)隨機地從盒子里無放回地抽取兩張標簽.記X為兩張標簽上的數(shù)字之和.
(1)求X的分布列.
(2)求X的期望E(X)和方差D(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在五面體ABCDEF中,F(xiàn)A⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M為EC的中點,AF=AB=BC=FE= AD,

(1)求異面直線BF與DE所成的角的大。
(2)證明平面AMD⊥平面CDE;
(3)求二面角A﹣CD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) 的極值點.
(1)若函數(shù)f(x)在x=2的切線平行于3x﹣4y+4=0,求函數(shù)f(x)的解析式;
(2)若f(x)=0恰有兩解,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工科院校對, 兩個專業(yè)的男女生人數(shù)進行調(diào)查,得到如下的列聯(lián)表:

專業(yè)

專業(yè)

總計

女生

12

4

16

男生

38

46

84

總計

50

50

100

(Ⅰ)從專業(yè)的女生中隨機抽取2名女生參加某項活動,其中女生甲被選到的概率是多少?

(Ⅱ)能否有95%的把握認為工科院校中“性別”與“專業(yè)”有關系?

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(示意),公路AM、AN圍成的是一塊頂角為α的角形耕地,其中tanα=-2.在該塊土地中P處有一小型建筑,經(jīng)測量,它到公路AM,AN的距離分別為3km,km.現(xiàn)要過點P修建一條直線公路BC,將三條公路圍成的區(qū)域ABC建成一個工業(yè)園.為盡量減少耕地占用,問如何確定B點的位置,使得該工業(yè)園區(qū)的面積最小?并求最小面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1和雙曲線C2焦點相同,且離心率互為倒數(shù),F(xiàn)1 , F2它們的公共焦點,P是橢圓和雙曲線在第一象限的交點,當∠F1PF2=60°時,則橢圓C1的離心率為(  )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案