【題目】設ξ為隨機變量,從側面均是等邊三角形的正四棱錐的8條棱中任選兩條,ξ為這兩條棱所成的角.
(1)求概率 ;
(2)求ξ的分布列,并求其數(shù)學期望E(ξ).

【答案】
(1)解:從正四棱錐的8條棱中任選2條,共有 種不同方法,

其中“ξ= ”包含了兩種情形:

①從底面正方形的4條棱中任選兩條相鄰的棱,共有4種不同方法,

②從4條側棱中選兩條,共有2種不同方法,

∴P(ξ= )= =


(2)解:依題意,ξ的所有可能取值為0, , ,

“ξ=0”包含了從底面正方形的4條棱中任選兩條對棱,共同點種不同方法,

∴P(ξ=0)= = ,

P(ξ= )= =

P(ξ= )=1﹣P(ξ=0)﹣P(ξ= )=

∴ξ的分布列為:

ξ

0

P

E(ξ)= =


【解析】(1)從正四棱錐的8條棱中任選2條,共有 種不同方法,其中“ξ= ”包含了兩種情形:從底面正方形的4條棱中任選兩條相鄰的棱,共有4種不同方法;從4條側棱中選兩條,共有2種不同方法.由此能求出概率P(ξ= ).(2)依題意,ξ的所有可能取值為0, , ,分別求出相應的概率,由此能求出ξ的分布列,并求其數(shù)學期望E(ξ).
【考點精析】通過靈活運用離散型隨機變量及其分布列,掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù),.

)求的單調區(qū)間和極值;

)證明:若存在零點,則在區(qū)間上僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: =1(a>b>0),傾斜角為45°的直線與橢圓相交于M、N兩點,且線段MN的中點為(﹣1, ).過橢圓E內一點P(1, )的兩條直線分別與橢圓交于點A、C和B、D,且滿足 ,其中λ為實數(shù).當直線AP平行于x軸時,對應的λ=

(1)求橢圓E的方程;
(2)當λ變化時,kAB是否為定值?若是,請求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)與函數(shù)的圖象在點(0,0)處有相同的切線.

Ⅰ)求a的值;

Ⅱ)設,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的n項和為Sn , 且a1=a2=1,{nSn+(n+2)an}為等差數(shù)列,則{an}的通項公式an=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2(lnx+lna)(a>0).
(1)當a=1時,設函數(shù)g(x)= ,求函數(shù)g(x)的單調區(qū)間與極值;
(2)設f′(x)是f(x)的導函數(shù),若 ≤1對任意的x>0恒成立,求實數(shù)a的取值范圍;
(3)若x1 , x2∈( ,1),x1+x2<1,求證:x1x2<(x1+x24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數(shù)列,并求{an}的通項公式;
(2)證明: + +…+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙十一已經成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務平臺對某市的網(wǎng)民在今年雙十一的網(wǎng)購情況進行摸底調查,用隨機抽樣的方法抽取了100人,其消費金額(百元)的頻率分布直方圖如圖所示:

1)求網(wǎng)民消費金額的平均值和中位數(shù)

(2)把下表中空格里的數(shù)填上,能否有90%的把握認為網(wǎng)購消費與性別有關;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[1,2]上是減函數(shù),若α,β是銳角三角形的兩個內角,則(  )

A. f B. f

C. f D. f

查看答案和解析>>

同步練習冊答案