【題目】如圖,在三棱柱中,平面.且四邊形是菱形,.

(1)求證:

(2)若,三棱錐的體積為,求的面積.

【答案】(1)見解析;(2).

【解析】

試題(1)連結(jié),因?yàn)?/span>平面,可得.

因?yàn)樗倪呅?/span>是菱形,可知,然后根據(jù)線面垂直的判定定理可得平面.據(jù)此即可證明結(jié)果;(2)由平面可知.設(shè)菱形的邊長(zhǎng)為,因?yàn)?/span>,由余弦定理可得.因?yàn)?/span>,由勾股定理得,所以.因?yàn)?/span>平面,可得,所以在中,.因?yàn)?/span>,可得:,根據(jù),據(jù)此即可求出結(jié)果.

試題解析:

(1)證明:連結(jié)

因?yàn)?/span>平面,平面,所以.

因?yàn)樗倪呅?/span>是菱形,所以,

又因?yàn)?/span> ,所以平面.

因?yàn)?/span>平面,所以.

(2)由平面,可知.

設(shè)菱形的邊長(zhǎng)為

因?yàn)?/span>,所以.

因?yàn)?/span>,所以,所以.

因?yàn)?/span>平面,側(cè)面,所以,

所以在中,.

因?yàn)?/span>,

解得:,所以,.

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬(wàn)元)和銷售額(萬(wàn)元)數(shù)據(jù)如下:

(1)若用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

(2)用二次函數(shù)回歸模型擬合的關(guān)系,可得回歸方程: ,計(jì)算二次函數(shù)回歸模型和線性回歸模型的分別約為0.75和0.97,請(qǐng)用說(shuō)明選擇個(gè)回歸模型更合適,并用此模型預(yù)測(cè)超市廣告費(fèi)支出為8萬(wàn)元時(shí)的銷售額.

參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班共有學(xué)生45人,其中女生18人,現(xiàn)用分層抽樣的方法,從男、女學(xué)生中各抽取若干學(xué)生進(jìn)行演講比賽,有關(guān)數(shù)據(jù)見下表(單位:人)

性別

學(xué)生人數(shù)

抽取人數(shù)

女生

18

男生

3

1)求

2)若從抽取的學(xué)生中再選2人做專題演講,求這2人都是男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù).在以原點(diǎn)為極點(diǎn),為參數(shù)).在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

(Ⅰ)求曲線C的普通方程和直線的直角坐標(biāo)方程;

(Ⅱ)設(shè),直線與曲線C交于M,N兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對(duì)玉米種植情況進(jìn)行調(diào)研,力爭(zhēng)有效的改良玉米品種,為農(nóng)民提供技術(shù)支.現(xiàn)對(duì)已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如右圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.

1)完成列聯(lián)表,并判斷是否可以在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?

2①按照分層抽樣的方式,在上述樣本中,從易倒伏和抗倒伏兩組中抽取9株玉米,設(shè)取出的易倒伏矮莖玉米株數(shù)為,求的分布列(概率用組合數(shù)算式表示);

②若將頻率視為概率,從抗倒伏的玉米試驗(yàn)田中再隨機(jī)抽取出50株,求取出的高莖玉米株數(shù)的數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知對(duì)稱軸為坐標(biāo)軸的雙曲線有一條漸近線為2x﹣y=0,則該雙曲線的離心率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),圓,定點(diǎn),點(diǎn)是圓上一動(dòng)點(diǎn),線段的垂直平分線交圓的半徑于點(diǎn),點(diǎn)的軌跡為.

(1)求曲線的方程;

(2)已知點(diǎn)是曲線上但不在坐標(biāo)軸上的任意一點(diǎn),曲線軸的焦點(diǎn)分別為,直線分別與軸相交于兩點(diǎn),請(qǐng)問線段長(zhǎng)之積是否為定值?如果還請(qǐng)求出定值,如果不是請(qǐng)說(shuō)明理由;

(3)在(2)的條件下,若點(diǎn)坐標(biāo)為(-1,0),設(shè)過點(diǎn)的直線相交于兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)(e為自然對(duì)數(shù)的底數(shù)),

(I)記.

(i)討論函數(shù)單調(diào)性;

(ii)證明當(dāng)時(shí),恒成立

(II)令,設(shè)函數(shù)G(x)有兩個(gè)零點(diǎn),求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,其中.

(1)當(dāng)時(shí),求函數(shù)單調(diào)遞增區(qū)間;

(2)求證:對(duì)任意,函數(shù)的圖象在點(diǎn)處的切線恒過定點(diǎn);

(3)是否存在實(shí)數(shù)的值,使得上有最大值或最小值,若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案