【題目】某市春節(jié)期間7家超市的廣告費支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:
(1)若用線性回歸模型擬合與的關系,求關于的線性回歸方程;
(2)用二次函數(shù)回歸模型擬合與的關系,可得回歸方程: ,計算二次函數(shù)回歸模型和線性回歸模型的分別約為0.75和0.97,請用說明選擇個回歸模型更合適,并用此模型預測超市廣告費支出為8萬元時的銷售額.
參考數(shù)據(jù): .
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓(),以橢圓內一點為中點作弦,設線段的中垂線與橢圓相交于, 兩點.
(Ⅰ)求橢圓的離心率;
(Ⅱ)試判斷是否存在這樣的,使得, , , 在同一個圓上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在甲、乙兩個盒子中分別裝有標號為1,2,3,4的四個球,現(xiàn)從甲乙兩個盒子中各取出1個球,球的標號分別記做a,b,每個球被取出的可能性相等.
(1)求a+b能被3整除的概率;
(2)若|a-b|≤1則中獎,求中獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,左頂點為.
(1)求橢圓的方程;
(2)已知為坐標原點, 是橢圓上的兩點,連接的直線平行交軸于點,證明: 成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的離心率為,點在橢圓上, 為坐標原點.
(1)求橢圓的方程;
(2)已知點為橢圓上的三點,若四邊形為平行四邊形,證明:四邊形的面積為定值,并求該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓與雙曲線有共同焦點,且離心率為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設為橢圓的下頂點, 為橢圓上異于的不同兩點,且直線與的斜率之積為.
(ⅰ)試問所在直線是否過定點?若是,求出該定點;若不是,請說明理由;
(ⅱ)若為橢圓上異于的一點,且,求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某手機生產企業(yè)為了解消費者對某款手機功能的認同情況,通過銷售部隨機抽取50名購買該款手機的消費者,并發(fā)出問卷調查(滿分50分),該問卷只有30份給予回復,這30份的評分如下:
(Ⅰ)完成下面的莖葉圖,并求16名男消費者評分的中位數(shù)與14名女消費者評分的平均值;
(Ⅱ)若大于40分為“滿意”,否則為“不滿意”,完成上面的列聯(lián)表,并判斷是否有的把握認為消費者對該款手機的“滿意度”與性別有關.
參考公式: ,其中
參考數(shù)據(jù):
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com