【題目】已知函數(shù)x=1處的切線與直線平行。

(Ⅰ)求a的值并討論函數(shù)y=f(x)上的單調(diào)性。

(Ⅱ)若函數(shù) (為常數(shù))有兩個零點,

(1)m的取值范圍;

(2)求證: 。

【答案】(Ⅰ),函數(shù)y=f(x)在上單調(diào)遞減; (Ⅱ)(1;(2)見解析.

【解析】試題分析:(Ⅰ)求導(dǎo)數(shù),由在x=1處的切線知,即可求a的值,根據(jù)導(dǎo)數(shù)討論單調(diào)性即可;

由函數(shù)有兩個零點結(jié)合可知,,構(gòu)造,求導(dǎo)證明.

試題解析:

(Ⅰ)

,令

上單調(diào)遞增,在上單調(diào)遞減,所以時,

,即時,

所以函數(shù)y=f(x)在上單調(diào)遞減。

(1)由條件可知,

在, ,

要使函數(shù)有兩個零點,則2m<0,即

(2)由 (Ⅰ)可知,

所以

上單調(diào)遞減,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:實數(shù)x滿足,其中a≠0,q:實數(shù)x滿足.

(I)若a=1,且p∧q為真,求實數(shù)x的取值范圍.

(II)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),當(dāng)x∈(﹣∞,0)時,f(x)=﹣x2+mx﹣1.
(1)當(dāng)x∈(0,+∞)時,求f(x)的解析式;
(2)若方程f(x)=0有五個不相等的實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】孝感星河天街購物廣場某營銷部門隨機抽查了100名市民在2017年國慶長假期間購物廣場的消費金額,所得數(shù)據(jù)如表,已知消費金額不超過3千元與超過3千元的人數(shù)比恰為3:2.

(1)試確定, , , 的值,并補全頻率分布直方圖(如圖);

(2)用分層抽樣的方法從消費金額在的兩個群體中抽取5人進行問卷調(diào)查,則各小組應(yīng)抽取幾人?若從這5人中隨機選取2人,則此2人來自同一群體的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}.
(1)求A∩B,A∪B;
(2)如果A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省2016年高中數(shù)學(xué)學(xué)業(yè)水平測試的原始成績采用百分制,發(fā)布成績使用等級制.各等制劃分標(biāo)準(zhǔn)為:85分及以上,記為等;分?jǐn)?shù)在內(nèi),記為等;分?jǐn)?shù)在內(nèi),記為等;60分以下,記為等.同時認(rèn)定為合格, 為不合格.已知甲,乙兩所學(xué)校學(xué)生的原始成績均分布在內(nèi),為了比較兩校學(xué)生的成績,分別抽取50名學(xué)生的原始成績作為樣本進行統(tǒng)計,按照的分組作出甲校的樣本頻率分布直方圖如圖1所示,乙校的樣本中等級為的所有數(shù)據(jù)莖葉圖如圖2所示.

(Ⅰ)求圖1中的值,并根據(jù)樣本數(shù)據(jù)比較甲乙兩校的合格率;

(Ⅱ)在選取的樣本中,從甲,乙兩校等級的學(xué)生中隨機抽取3名學(xué)生進行調(diào)研,用表示所抽取的3名學(xué)生中甲校的學(xué)生人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=x+ ﹣2.
(1)證明:函數(shù)g(x)在[ ,+∞)上是增函數(shù);
(2)若不等式g(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 的離心率與雙曲線的離心率互為倒數(shù),且橢圓的長軸長為4.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線交橢圓 兩點, )為橢圓上一點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是公比為正數(shù)的等比數(shù)列, .

(1)求的通項公式;

(2)設(shè)是首項為1,公差為2的等差數(shù)列,求數(shù)列的前n項和.

查看答案和解析>>

同步練習(xí)冊答案