【題目】某食品的保鮮時間t(單位:小時與儲藏溫度x(單位:℃)滿足函數(shù)關(guān)系t=且該食品在4℃的保鮮時間是16小時。已知甲在某日上午10時購買了該食品,并將其遺放在室外,且此日的室外溫度隨時間變化如圖所示。給出以下四個結(jié)論:

①該食品在6℃的保鮮時間是8小時;

②當x∈[-6,6]時,該食品的保鮮時間t隨著x增大而逐漸減少;

到了此日13時,甲所購買的食品還在保鮮時間內(nèi);

④到了此日14時,甲所購買的食品已然過了保鮮時間。

其中,所有正確結(jié)論的序號是__________。

【答案】①④

【解析】∵食品的保鮮時間(單位:小時)與儲藏溫度(單位:℃)滿足函數(shù)關(guān)系且該食品在4℃的保鮮時間是小時,,即,解得:,∴,當時,,故①該食品在6℃的保鮮時間是8小時,正確;②當時,保鮮時間恒為64小時,當時,該食品的保鮮時間隨看增大而逐漸減少,故錯誤;③到了此日10時,溫度超過8度,此時保鮮時間不超過4小時,故到13時,甲所購買的食品不在保鮮時間內(nèi),故錯誤;④到了此日14時,甲所購買的食品已然過了保鮮時間,故正確,故正確的結(jié)論的序號為①④,故答案為①④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱錐C1B1CD1后得到的幾何體如圖所示.四邊形ABCD為正方形,OACBD的交點,EAD的中點,A1E⊥平面ABCD.

(1)證明:A1O∥平面B1CD1;

(2)設(shè)MOD的中點,證明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,PA⊥底面ABCD,ADBC,ABADAC=3,PABC=4,M為線段AD上一點,AM=2MD,NPC的中點.

(1)證明MN∥平面PAB;

(2)求四面體NBCM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐S﹣ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等邊三角形.AB=BC=2,CD=SD=1.
(1)證明:SD⊥平面SAB
(2)求AB與平面SBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù),ω>0,|φ|<)的一個零點與之相鄰的對稱軸之間的距離為,且fx)有最小值.

(1)求的解析式;

(2)若,求fx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,4]上的最大值為9,最小值為1,記f(x)=g(|x|)。

(1)求實數(shù)a,b的值;

(2)若不等式f(2k)>1成立,求實數(shù)k的取值范圍;

(3)定義在[p,q]上的函數(shù)(x),設(shè)p=x0<x1<…<xi-1<xi<…<xn=q,x1,x2,…,xn-l將區(qū)間[p,q]任意劃分成n個小區(qū)間,如果存在一個常數(shù)M>0,使得和式恒成立,則稱函數(shù)(x)為在[p,q]上的有界變差函數(shù)試判斷函數(shù)f(x)是否為在[0,4]上的有界變差函數(shù)?若是,求M的最小值;若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 是正方形, 平面, , , 分別是 , 的中點.

)求四棱錐的體積.

)求證:平面平面

)在線段上確定一點,使平面,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy 中,已知圓C的參數(shù)方程為 (φ為參數(shù)).以坐標原點為極點,x軸正半軸為極軸建立極坐標系.
(1)求圓的極坐標方程;
(2)直線l的極坐方程是 ,射線OM:θ= 與圓的交點為O,P,與直線l的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機變量ξ的分布列如表,其中a,b,c成等差數(shù)列.若E(ξ)= ,則D(ξ)=(

ξ

1

2

3

P

a

b

c


A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案