【題目】已知函數(shù),函數(shù).

1)討論的單調(diào)性;

2)證明:當(dāng)時,.

3)證明:當(dāng)時,.

【答案】(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析

【解析】

1)求出的定義域,導(dǎo)函數(shù),對參數(shù)分類討論得到答案.

(2)設(shè)函數(shù),求導(dǎo)說明函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得證.

3)由(1)可知,可得,即即可得證.

1)解:的定義域為,

當(dāng),時,,則上單調(diào)遞增;

當(dāng)時,令,得,令,得,則上單調(diào)遞減,在上單調(diào)遞增;

當(dāng),時,,則上單調(diào)遞減;

當(dāng),時,令,得,令,得,則上單調(diào)遞增,在上單調(diào)遞減;

2)證明:設(shè)函數(shù),則.

因為,所以,,

,從而上單調(diào)遞減,

所以,即.

3)證明:當(dāng)時,.

由(1)知,,所以

.

當(dāng)時,,

,

,

,

所以,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該?忌纳龑W(xué)情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結(jié)論正確的是  

A. 與2015年相比,2018年一本達(dá)線人數(shù)減少

B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了

C. 2015年與2018年藝體達(dá)線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù),且的極小值為.

(Ⅰ)求的值;

(Ⅱ)若過點可作三條不同的直線與曲線相切,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),動點到定點的距離與到定直線距離之比為

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)設(shè)點是軌跡上兩個動點直線與軌跡的另一交點分別為且直線的斜率之積等于,問四邊形的面積是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,已知:a52a2+3a2,,a14成等比數(shù)列.

(Ⅰ)求數(shù)列{an}的通項公式;

(Ⅱ)設(shè)正項數(shù)列{bn}滿足bn2Sn+1Sn+1+2,求證:b1+b2++bnn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,單位圓上有一點,點以點為起點按逆時針方向以每秒弧度作圓周運動,點的縱坐標(biāo)是關(guān)于時間的函數(shù),記作.

1)當(dāng)時,求;

2)若將函數(shù)向左平移個單位長度后,得到的曲線關(guān)于軸對稱,求的最小正值,并求此時的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)棋藝協(xié)會定期舉辦以棋會友的競賽活動,分別包括中國象棋、圍棋、五子棋國際象棋四種比賽,每位協(xié)會會員必須參加其中的兩種棋類比賽,且各隊員之間參加比賽相互獨立;已知甲同學(xué)必選中國象棋,不選國際象棋,乙同學(xué)從四種比賽中任選兩種參與.

1)求甲參加圍棋比賽的概率;

2)求甲、乙兩人參與的兩種比賽都不同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,AA1AC,A1BAC1,設(shè)OAC1A1C的交點,點PBC的中點.求證:

1OP∥平面ABB1A1;

2)平面ACC1⊥平面OCP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線定位法是通過測定待定點到至少三個已知點的兩個距離差所進(jìn)行的一種無線電定位.通過船(待定點)接收到三個發(fā)射臺的電磁波的時間差計算出距離差,兩個距離差即可形成兩條位置雙曲線,兩者相交便可確定船位.我們來看一種簡單的特殊狀況;如圖所示,已知三個發(fā)射臺分別為,且剛好三點共線,已知海里,海里,現(xiàn)以的中點為原點,所在直線為軸建系.現(xiàn)根據(jù)船接收到點與點發(fā)出的電磁波的時間差計算出距離差,得知船在雙曲線的左支上,若船上接到臺發(fā)射的電磁波比臺電磁波早(已知電磁波在空氣中的傳播速度約為1海里),則點的坐標(biāo)(單位:海里)為(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案