已知函數(shù)f(x)與g(x)滿足f(2+x)=f(2-x),g(x+1)=g(x-1),且f(x)在區(qū)間[2,+∞)上為減函數(shù),令h(x)=f(x)•|g(x)|,則下列不等式正確的有
 

①h(-2)≥h(4)
②h(-2)≤h(4)
③h(0)>h(4)
④h(0)=h(4).
考點:抽象函數(shù)及其應用
專題:函數(shù)的性質(zhì)及應用
分析:由已知中函數(shù)f(x)與g(x)滿足f(2+x)=f(2-x),g(x+1)=g(x-1),且f(x)在區(qū)間[2,+∞)上為減函數(shù),可判斷出f(4)=f(0),f(-2)<f(4),及g(-2)=g(0)=g(2)=g(4),結合不等式的基本性質(zhì)可得答案.
解答: 解:∵函數(shù)f(x)滿足f(2+x)=f(2-x),
故函數(shù)f(x)的圖象關于直線x=2對稱
當x=2時,f(4)=f(0)…①
又∵f(x)在區(qū)間[2,+∞)上為減函數(shù),
∴f(x)在區(qū)間(-∞,2]上為增函數(shù),
當x=4時,f(6)=f(-2)<f(4)…②
又∵g(x+1)=g(x-1),故函數(shù)g(x)是又2為周期的周期函數(shù)
g(-2)=g(0)=g(2)=g(4)…③,
∵h(x)=f(x)•|g(x)|,
由①③得:h(0)=h(4).
由①②得:h(-2)≤h(4)
故答案為:②④
點評:本題考查的知識點是抽象函數(shù)及其應用,函數(shù)的對稱性,函數(shù)的周期性,不等式的基本性質(zhì),其中根據(jù)已知分析出f(4)=f(0),f(-2)<f(4),及g(-2)=g(0)=g(2)=g(4)是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的側面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A、20+12
2
B、20+24
2
C、20+12
5
D、56

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=loga
1+x
1-x
(a>0,a≠1)

(Ⅰ)求f(x)的定義域;             
(Ⅱ)判斷f(x)的奇偶性并予以證明;
(Ⅲ)寫出f(x)的單調(diào)區(qū)間.(不必證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=log
1
2
(-x2+3x+10)
的增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+a(x2-x)
(1)若a=-1,求證f(x)有且僅有一個零點;
(2)若對于x∈[1,2],函數(shù)f(x)圖象上任意一點處的切線的傾斜角都不大于
π
4
,求實數(shù)a的取值范圍;
(3)若f(x)存在單調(diào)遞減區(qū)間,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義行列式運算:
.
a1a2
a3a4
.
=a1a4-a2a3,將函數(shù)f(x)=
.
3
cosx
1sinx
.
的圖象向左平移m個單位(m>0),若所得圖象對應的函數(shù)為偶函數(shù),則m的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若對任意的x∈R,函數(shù)f(x)滿足f(x+1)=-f(x),且f(2013)=-2013,則f(-1)=( 。
A、1B、-1
C、2013D、-2013

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下列算式:
1=1,
3+5=8,
7+9+11=27,
13+15+17+19=64,
21+23+25+27+29=125,

猜測第n行的式子為
 

查看答案和解析>>

同步練習冊答案