已知點,點在曲線:上.
(1)若點在第一象限內(nèi),且,求點的坐標(biāo);
(2)求的最小值.

(1);(2).

解析試題分析: (1) 本小題可以通過坐標(biāo)法來處理,首先根據(jù)點在第一象限內(nèi)設(shè)其),然后根據(jù)兩點間距離公式,再結(jié)合點在曲線:上,聯(lián)立可解得,即點的坐標(biāo)為;
(2) 本小題根據(jù)(1)中所得其中代入可得),顯然根據(jù)二次函數(shù)可知當(dāng)時,.
試題解析:設(shè)),
(1)由已知條件得          2分
代入上式,并變形得,,解得(舍去)或     4分
當(dāng)時,
只有滿足條件,所以點的坐標(biāo)為      6分
(2)其中          7分
)    10分
當(dāng)時,              12分
(不指出,扣1分)
考點:1.坐標(biāo)法;2.二次函數(shù)求最值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市對排污水進行綜合治理,征收污水處理費,系統(tǒng)對各廠一個月內(nèi)排出的污水量噸收取的污水處理費元,運行程序如下所示:請寫出y與m的函數(shù)關(guān)系,并求排放污水150噸的污水處理費用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的自變量的取值區(qū)間為A,若其值域區(qū)間也為A,則稱A為的保值區(qū)間.
(Ⅰ)求函數(shù)形如的保值區(qū)間;
(Ⅱ)函數(shù)是否存在形如的保值區(qū)間?若存在,求出實數(shù)的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求值:(1) 
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種商品原來每件售價為25元,年銷售8萬件.
(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了擴大該商品的影響力,提高年銷售量.公司決定明年對該商品進行全面技術(shù)革新和營銷策略改革,并提高定價到元.公司擬投入萬元作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當(dāng)該商品明年的銷售量至少應(yīng)達到多少萬件時,才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù)).
(Ⅰ)求函數(shù)的定義域;
(Ⅱ)若,,求函數(shù)的值域;
(Ⅲ)若函數(shù)的圖像恒在直線的上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某廠家準(zhǔn)備在2013年12月份舉行促銷活動,依以往的數(shù)據(jù)分析,經(jīng)測算,該產(chǎn)品的年銷售量萬件(假設(shè)該廠生產(chǎn)的產(chǎn)品全部銷售),與年促銷費用萬元近似滿足,如果不促銷,該產(chǎn)品的年銷售量只能是1萬件.已知2013年生產(chǎn)該產(chǎn)品的固定投入10萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元.廠家將每件產(chǎn)品的銷售價格規(guī)定為每件產(chǎn)品成本的1.5倍.(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2013年該產(chǎn)品的年利潤萬元表示為年促銷費用萬元的函數(shù);
(2)該廠家2013年的年促銷費用投入為多少萬元時,該廠家的年利潤最大?并求出年最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某林場現(xiàn)有木材30000,如果每年平均增長5﹪,經(jīng)過年,樹林中有木材,
(1)寫出木材儲量)與之間的函數(shù)關(guān)系式。
(2)經(jīng)過多少年儲量不少于60000?(結(jié)果保留一個有效數(shù)字)
(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)上單調(diào)遞減且滿足.
(1)求的取值范圍.
(2)設(shè),求上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案