【題目】已知函數(shù),.

(1)若存在極小值,求實數(shù)的取值范圍;

(2)設的極小值點,且,證明:.

【答案】(1) .(2)見解析.

【解析】

1)先求得導函數(shù),根據(jù)定義域為,可構造函數(shù),通過求導及分類討論,即可求得的取值范圍。

2)由(1)令,通過分離參數(shù)得,同時求對數(shù),根據(jù)函數(shù),可得。構造函數(shù),由導數(shù)即可判斷的單調情況,進而求得的最小值,結合即可證明不等式成立。

1.

,

所以上是增函數(shù).

又因為當時,

時,.

所以,當時,,函數(shù)在區(qū)間上是增函數(shù),不存在極值點;

時,的值域為,

必存在使.

所以當時,,單調遞減;

時,,單調遞增;

所以存在極小值點.

綜上可知實數(shù)的取值范圍是.

2)由(1)知,即.

所以,

.

,得.

,顯然在區(qū)間上單調遞減.

,所以由,得.

,

,

時,,函數(shù)單調遞增;

時,,函數(shù)單調遞減;

所以,當時,函數(shù)取最小值,

所以,即,即,

所以,,

所以

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列、,其中, ,數(shù)列滿足,,數(shù)列滿足

(1)求數(shù)列、的通項公式;

(2)是否存在自然數(shù),使得對于任意恒成立?若存在,求出的最小值;

(3)若數(shù)列滿足,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年初,新冠肺炎疫情襲擊全國,某省由于人員流動性較大,成為湖北省外疫情最嚴重的省份之一,截至229日,該省已累計確診1349例患者(無境外輸入病例).

1)為了解新冠肺炎的相關特征,研究人員從該省隨機抽取100名確診患者,統(tǒng)計他們的年齡數(shù)據(jù),得下面的頻數(shù)分布表:

年齡

人數(shù)

2

6

12

18

22

22

12

4

2

由頻數(shù)分布表可以大致認為,該省新冠肺炎患者的年齡服從正態(tài)分布img src="http://thumb.zyjl.cn/questionBank/Upload/2020/05/25/11/70cd3e4c/SYS202005251112216152234742_ST/SYS202005251112216152234742_ST.011.png" width="80" height="22" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,其中近似為這100名患者年齡的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).請估計該省新冠肺炎患者年齡在70歲以上()的患者比例;

2)截至229日,該省新冠肺炎的密切接觸者(均已接受檢測)中確診患者約占10%,以這些密切接觸者確診的頻率代替1名密切接觸者確診發(fā)生的概率,每名密切接觸者是否確診相互獨立.現(xiàn)有密切接觸者20人,為檢測出所有患者,設計了如下方案:將這20名密切接觸者隨機地按20的約數(shù))個人一組平均分組,并將同組的個人每人抽取的一半血液混合在一起化驗,若發(fā)現(xiàn)新冠病毒,則對該組的個人抽取的另一半血液逐一化驗,記個人中患者的人數(shù)為,以化驗次數(shù)的期望值為決策依據(jù),試確定使得20人的化驗總次數(shù)最少的的值.

參考數(shù)據(jù):若,則,,,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產了兩種產品投放市場,計劃每年對這兩種產品托人200萬元,每種產品一年至少投入20萬元,其中產品的年收益,產品的年收益與投入(單位萬元)分別滿足;若公司有100名銷售人員,按照對兩種產品的銷售業(yè)績分為普銷售、中級銷售以及金牌銷售,其中普銷售28人,中級銷售60人,金牌銷售12

1)為了使兩種產品的總收益之和最大,求產品每年的投入

2)為了對表現(xiàn)良好的銷售人員進行獎勵,公司制定了兩種獎勵方案:

方案一:按分層抽樣從三類銷售中總共抽取25人給予獎勵:普通銷售獎勵2300元,中級銷售獎勵5000元;金牌銷售獎勵8000

方案二:每位銷售都參加摸獎游戲,游戲規(guī)則:從一個裝有3個白球,2個紅球(求只有顏色不同)的箱子中,有放回地莫三次球,每次只能摸一只球.若摸到紅球的總數(shù)為2,則可獎勵1500元,若摸到紅球總數(shù)是3,則可獲得獎勵3000元,其他情況不給予獎勵,規(guī)定普通銷售均可參加1次摸獎游戲;中級銷售均可參加2次摸獎游戲,金牌銷售均可參加3次摸獎游戲(每次摸獎的結果相互獨立,獎勵疊加)

(。┣蠓桨敢华剟畹目偨痤~;

(ⅱ)假設你是企業(yè)老板,試通過計算并結合實際說明,你會選擇哪種方案獎勵銷售員.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定一個數(shù)列,在這個數(shù)列里,任取項,并且不改變它們在數(shù)列中的先后次序,得到的數(shù)列稱為數(shù)列的一個階子數(shù)列

已知數(shù)列的通項公式為為常數(shù),等差數(shù)列

數(shù)列的一個3階子數(shù)列

1的值;

2等差數(shù)列的一個 階子數(shù)列,且

為常數(shù),,求證:;

3等比數(shù)列的一個 階子數(shù)列,

求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分12如圖,三棱柱ABC-A1B1C1,CA=CBAB=A A1,BA A1=60°.

)證明ABA1C;

)若平面ABC平面AA1B1B,AB=CB,直線A1C 與平面BB1C1C所成角正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點

1)求橢圓的方程;

2)設不過原點的直線與該橢圓交于兩點,滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面為正方形,,,,的中點,為棱上的一點.

1)證明:面;

2)當中點時,求二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題方程表示雙曲線;命題不等式的解集是. 為假, 為真,的取值范圍.

【答案】

【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.

試題解析:

,

范圍為

型】解答
束】
18

【題目】如圖,設是圓上的動點軸上的投影, 上一點,.

1)當在圓上運動時,求點的軌跡的方程

2)求過點且斜率為的直線被所截線段的長度.

查看答案和解析>>

同步練習冊答案