【題目】甲、乙兩人同時(shí)參加一次數(shù)學(xué)測(cè)試,共有道選擇題,每題均有個(gè)選項(xiàng),答對(duì)得分,答錯(cuò)或不答得分.甲和乙都解答了所有的試題,經(jīng)比較,他們只有道題的選項(xiàng)不同,如果甲最終的得分為分,那么乙的所有可能的得分值組成的集合為____________

【答案】

【解析】

將甲、乙兩人選項(xiàng)不同的試題分成兩類(lèi),一類(lèi)是在甲答對(duì)的題目中,另一類(lèi)是在甲答錯(cuò)的題目中,再結(jié)合乙能否答對(duì)的情況,求得乙的所有可能的得分值組成的集合.

甲得分有分,所以甲一共答對(duì)題,答錯(cuò). 將甲、乙兩人選項(xiàng)不同的試題分成兩類(lèi),一類(lèi)是在甲答對(duì)的題目中,另一類(lèi)是在甲答錯(cuò)的題目中.

若選項(xiàng)不同的試題在甲答對(duì)的題目中,則乙的選項(xiàng)錯(cuò)誤,故乙一共答對(duì)題,答錯(cuò)題,得分為.

若選項(xiàng)不同的試題在甲答錯(cuò)的題目中,

i)若乙答錯(cuò)此題,則乙一共答對(duì)題,答錯(cuò)題,得分為.

ii)若乙答對(duì)此題,則乙一共答對(duì)題,答錯(cuò)題,得分為.

綜上所述,乙的所有可能的得分值組成的集合為.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知表示不小于的最小整數(shù),例如.

1)設(shè),,,求實(shí)數(shù)的取值范圍;

2)設(shè),在區(qū)間上的值域?yàn)?/span>,集合中元素的個(gè)數(shù)為,求證:;

3)設(shè)),,若對(duì)于,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖圓錐PO,軸截面PAB是邊長(zhǎng)為2的等邊三角形,過(guò)底面圓心O作平行于母線(xiàn)PA的平面,與圓錐側(cè)面的交線(xiàn)是以E為頂點(diǎn)的拋物線(xiàn)的一部分,則該拋物線(xiàn)的焦點(diǎn)到其頂點(diǎn)E的距離為( )

A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義在上的函數(shù),若函數(shù)滿(mǎn)足:①在區(qū)間上單調(diào)遞減;②存在常數(shù)p,使其值域?yàn)?/span>,則稱(chēng)函數(shù)漸近函數(shù);

1)證明:函數(shù)是函數(shù)的漸近函數(shù),并求此時(shí)實(shí)數(shù)p的值;

2)若函數(shù),證明:當(dāng)時(shí),不是的漸近函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐中,底面ABC,M BC的中點(diǎn),若底面ABC是邊長(zhǎng)為2的正三角形,且PB與底面ABC所成的角為. 求:

(1)三棱錐的體積;

(2)異面直線(xiàn)PMAC所成角的大小. (結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】乙兩人同時(shí)參加一次數(shù)學(xué)測(cè)試,共有20道選擇題,每題均有4個(gè)選項(xiàng),答對(duì)得3,答錯(cuò)或不答得0,甲和乙都解答了所有的試題,經(jīng)比較,他們只有2道題的選項(xiàng)不同,如果甲最終的得分為54,那么乙的所有可能的得分值組成的集合為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點(diǎn),異面直線(xiàn)PA與CD所成的角為90°.

(I)在平面PAB內(nèi)找一點(diǎn)M,使得直線(xiàn)CM∥平面PBE,并說(shuō)明理由;

(II)若二面角P-CD-A的大小為45°,求直線(xiàn)PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個(gè)工時(shí),生產(chǎn)一件產(chǎn)品A的利潤(rùn)為2100元,生產(chǎn)一件產(chǎn)品B的利潤(rùn)為900.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過(guò)600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤(rùn)之和的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,短軸長(zhǎng)為.

(1)求的方程;

(2)如圖,經(jīng)過(guò)橢圓左頂點(diǎn)且斜率為的直線(xiàn)交于兩點(diǎn),交軸于點(diǎn),點(diǎn)為線(xiàn)段的中點(diǎn),若點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,過(guò)點(diǎn)為坐標(biāo)原點(diǎn))垂直的直線(xiàn)交直線(xiàn)于點(diǎn),且面積為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案