【題目】如下圖中、、、、、六個區(qū)域進行染色,每個區(qū)域只染一種顏色,每個區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有種顏色可供選擇,則共有_________種不同的染色方案.
【答案】
【解析】
通過分析題目給出的圖形,可知要完成給出的圖形中、、、、、六個區(qū)域進行染色,最少需要種顏色,即同色,同色,同色,由排列知識可得該類染色方法的種數(shù);也可以種顏色全部用上,即、、三組中有一組不同色,同樣利用排列組合知識求解該類染色方法的種數(shù),最后利用分類加法求和即可.
要完成給出的圖形中、、、、、六個區(qū)域進行染色,
染色方法分為兩類,第一類是僅用三種顏色染色,
即同色,同色,同色,即從四種顏色中取三種顏色,有種取法,三種顏色染三個區(qū)域有種染法,共種染法;
第二類是用四種顏色染色,即、、三組中有一組不同色,則有種方案(不同色或不同色或不同色),
先從四種顏色中取兩種染同色區(qū)域有種染法,剩余兩種染在不同色區(qū)域有種染法,
共有種染法.
由分類加法原理可得總的染色方法種數(shù)為(種).
故答案為:.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△ABC為一個等腰三角形形狀的空地,腰CA的長為3(百米),底AB的長為4(百米).現(xiàn)決定在該空地內(nèi)筑一條筆直的小路EF(寬度不計),將該空地分成一個四邊形和一個三角形,設分成的四邊形和三角形的周長相等、面積分別為S1和S2.
(1) 若小路一端E為AC的中點,求此時小路的長度;
(2) 求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,過橢圓E的左焦點且與x軸垂直的直線與橢圓E相交于的P,Q兩點,O為坐標原點,的面積為.
(1)求橢圓E的方程;
(2)點M,N為橢圓E上不同兩點,若,求證:的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第二屆中國國際進口博覽會于2019年11月5日至10日在上海國家會展中心舉行.它是中國政府堅定支持貿(mào)易自由化和經(jīng)濟全球化,主動向世界開放市場的重要舉措,有利于促進世界各國加強經(jīng)貿(mào)交流合作,促進全球貿(mào)易和世界經(jīng)濟增長,推動開放世界經(jīng)濟發(fā)展.某機構(gòu)為了解人們對“進博會”的關注度是否與性別有關,隨機抽取了100名不同性別的人員(男、女各50名)進行問卷調(diào)查,并得到如下列聯(lián)表:
男性 | 女性 | 合計 | |
關注度極高 | 35 | 14 | 49 |
關注度一般 | 15 | 36 | 51 |
合計 | 50 | 50 | 100 |
(1)根據(jù)列聯(lián)表,能否有99.9%的把握認為對“進博會”的關注度與性別有關;
(2)若從關注度極高的被調(diào)查者中按男女分層抽樣的方法抽取7人了解他們從事的職業(yè)情況,再從7人中任意選取2人談談關注“進博會”的原因,求這2人中至少有一名女性的概率.
附:.
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓C上.
(1)求橢圓C的標準方程;
(2)若直線上與C交于A,B兩點,是否存在l,使得點在以AB為直徑的圓外.若存在,求出k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,,其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對任意,總存在,使得成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com