已知f(x)是定義在R上的偶函數(shù),對任意x∈R都有f(x+4)=f(x)+2f(2),且f(-1)=2,則f(2013)等于( 。
A、2B、3C、4D、6
考點(diǎn):函數(shù)奇偶性的性質(zhì),抽象函數(shù)及其應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)偶函數(shù)的定義,結(jié)合f(x+4)=f(x)+2f(2),令x=-2,求出f(2)=0,從而函數(shù)f(x)是周期為4的函數(shù),f(2013)=f(1),再由偶函數(shù)的定義得f(1)=f(-1),由條件即得.
解答: 解:∵f(x)是定義在R上的偶函數(shù),
∴f(-2)=f(2),
∵對任意x∈R都有f(x+4)=f(x)+2f(2),
令x=-2,則f(2)=f(-2)+2f(2),
∴f(2)=0,
∴f(x+4)=f(x),
即函數(shù)f(x)是最小正周期為4的函數(shù),
∴f(2013)=f(4×503+1)=f(1),
∵f(x)是定義在R上的偶函數(shù),
∴f(-1)=f(1),
又f(-1)=2,
∴f(2013)=2,
故選A.
點(diǎn)評:本題主要考查函數(shù)的周期性及應(yīng)用,函數(shù)的奇偶性的定義和運(yùn)用,考查解決抽象函數(shù)常用的方法:賦值法,正確賦值是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
9
=1(a>0)的漸近線方程為3x±2y=0,則
a
1
1
x
)dx的值為(  )
A、ln2B、0C、ln3D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓臺側(cè)面積為2π,母線l與底面所成角為60°,上底半徑為x,下底半徑為y (y>x>0),則函數(shù)y=f (x)的圖象是(  )(注:圓臺側(cè)面積公式S=π(r1+r2)l)
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某次測量中得到的A樣本數(shù)據(jù)如下:42,43,46,52,42,50,若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)每個(gè)都減5后所得數(shù)據(jù),則A、B兩樣本的下列數(shù)字特征對應(yīng)相同的是(  )
A、平均數(shù)B、標(biāo)準(zhǔn)差
C、眾數(shù)D、中位數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)多面體的直觀圖和三視圖所示,M是AB的中點(diǎn),一只蝴蝶在幾何體ADF-BCE內(nèi)自由飛翔,由它飛入幾何體F-AMCD內(nèi)的概率為( 。
A、
3
4
B、
2
3
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式ax-b>0的解集為(-∞,1),則不等式
x-2
ax-b
>0的解集為( 。
A、(-1,2)
B、(-∞,1)∪(1,2)
C、(1,2)
D、(-∞,-1)∪(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項(xiàng)均為正數(shù)的數(shù)列{an},其前n項(xiàng)和為Sn,滿足
an+1
an
-
2an
an+1
=1(n∈N*),且S5+2=a6
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明:7(an-12>3n+1(n∈N*);
(Ⅲ)若n∈N*,令bn=an2,設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn(n∈N*),試比較
Tn+1+12
4Tn
4n+6
4n-1
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1+cosωx,1),
b
=(1,a+
3
sinωx)(ω為常數(shù)且ω>0),函數(shù)f(x)=
a
b
在R上的最大值為2.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)把函數(shù)y=f(x)的圖象向右平移
π
個(gè)單位,可得函數(shù)y=g(x)的圖象,若y=g(x)在[0,
π
4
]上為增函數(shù),求ω取最大值時(shí)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案