已知向量
a
=(1+cosωx,1),
b
=(1,a+
3
sinωx)(ω為常數(shù)且ω>0),函數(shù)f(x)=
a
b
在R上的最大值為2.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)把函數(shù)y=f(x)的圖象向右平移
π
個單位,可得函數(shù)y=g(x)的圖象,若y=g(x)在[0,
π
4
]上為增函數(shù),求ω取最大值時的單調(diào)增區(qū)間.
考點:函數(shù)y=Asin(ωx+φ)的圖象變換,平面向量數(shù)量積的運算
專題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)通過向量的數(shù)量積以及兩角和與差的三角函數(shù),化為一個角的一個三角函數(shù)的形式,通過函數(shù)的最大值,即可求實數(shù)a的值;
(Ⅱ)通過函數(shù)y=f(x)的圖象向右平移
π
個單位,可得函數(shù)y=g(x)的圖象,利用y=g(x)在[0,
π
4
]上為增函數(shù),以及函數(shù)的周期,即可求ω取最大值,求出函數(shù)的單調(diào)增區(qū)間.
解答: 解:(Ⅰ)函數(shù)f(x)=
a
b
=1+cosωx+a+
3
sinx=2sin(ωx+
π
6
)+a+1,…(3分)
∵函數(shù)f(x)在R上的最大值為2,
∴3+a=2故a=-1…(4分)
(Ⅱ)由(Ⅰ)知:f(x)=2sin(ωx+
π
6
),
把函數(shù)f(x)=2sin(ωx+
π
6
)的圖象向右平移
π
個單位,可得函數(shù)y=g(x)=2sinωx…(7分)
又∵y=g(x)在[0,
π
4
]上為增函數(shù),
∴g(x)的周期T=
ω
≥π即ω≤2.
∴ω的最大值為2…(10分)
此時單調(diào)增區(qū)間為[kπ-
π
4
,kπ+
π
4
],k∈Z
…(12分)
點評:本題考查向量的數(shù)量積以及兩角和與差的三角函數(shù)就三角函數(shù)的圖象的平移,函數(shù)的基本性質(zhì),考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的偶函數(shù),對任意x∈R都有f(x+4)=f(x)+2f(2),且f(-1)=2,則f(2013)等于(  )
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=丨2x-a丨-a(a∈R),不等式f(x)≤2的解集為{x丨-1≤x≤3}.
(Ⅰ)求a的值;
(Ⅱ)若丨f(x)-f(x+2)丨≤m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量
m
=(cos2
x
2
3
sinx),
n
=(2,1),函數(shù)f(x)=
m
n

(Ⅰ)當(dāng)x∈[-
π
3
,
π
2
]時,求函數(shù)f(x)的取值范圍;
(Ⅱ)當(dāng)f(α)=
13
5
,且-
3
<α<
π
6
時,求sin(2α+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項都為正數(shù),且對任意n∈N*,a2n-1,a2n,a2n+1成等差數(shù)列,a2n,a2n+1,a2n+2成等比數(shù)列.
(1)若a2=1,a5=3,求a1的值;
(2)設(shè)a1<a2,求證:對任意n∈N*,且n≥2,都有
an+1
an
a2
a1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Msin(ωx-
π
4
)(M>0,ω>0)的部分圖象如圖所示.
(Ⅰ)求函數(shù)X的解析式;
(Ⅱ)△ABC中,角A,B,C的對邊分別為a,b,c,若f(
A
2
+
π
8
)=
3
,其中A∈(0,
π
2
),且a2+c2-b2=ac,求角A,B,C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-
1
3
x3+
1
2
f′(1)x2-f′(2)x+5,則曲線y=f(x)在點(0,f(0))處的切線的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,頂點A在橢圓
x2
4
+
y2
3
=1的一個焦點上,邊BC是過原點的弦,則△ABC面積的最大值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足
y≥x
x+3y≤4
x≥-2
,則z=|x-3y|的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案