若函數(shù)f(x)(x∈R)是奇函數(shù),函數(shù)g(x)(x∈R)是偶函數(shù),則一定成立的是(  )
A、函數(shù)f[g(x)]是奇函數(shù)
B、函數(shù)g[f(x)]是奇函數(shù)
C、函數(shù)f[f(x)]是奇函數(shù)
D、函數(shù)g[g(x)]是奇函數(shù)
考點:函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)奇偶性的定義分別進行判斷即可.
解答: 解:∵函數(shù)f(x)(x∈R)是奇函數(shù),函數(shù)g(x)(x∈R)是偶函數(shù),
則A.f[g(-x)]=f[g(x)]為偶函數(shù).
B.g[f(-x)]=g[-f(x)]=g[f(x)]為偶函數(shù).
C.f[f(-x)]=f[-f(x)]=-f[f(x)]為奇函數(shù).
D.g[g(-x)]=g[g(x)]是偶函數(shù).
故選:C
點評:本題主要考查函數(shù)奇偶性的判斷,利用奇偶性的定義直接代入進行驗證即可,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(x+1)-x.
(1)求函數(shù)f(x)在x=-
1
2
處的切線方程;
(2)當x1>x2>-1時,求證:f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)];
(3)若k∈R,且xf(x-1)+x2-k(x-1)>0對任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2
1
x+1
,f(a)=3,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的圖象經(jīng)過(2,3),則函數(shù)f(2-x)的圖象過點
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各組向量中,可以作為基底的是( 。
A、
e1
=(0,0)
e2
=(1,3)
B、
e1
=(3,5),
e2
=(-6,-10)
C、
e1
=(-1,2),
e2
=(-2,1)
D、
e1
=(-1,2),
e2
=(-
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的程序框圖,若執(zhí)行的運算是
1
2
×
1
3
×
1
4
×
1
5
,則在空白的執(zhí)行框中,應該填入( 。
A、T=T•i
B、T=T•(i+1)
C、T=T•
1
i+1
D、T=T•
1
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,平面ABCD⊥平面BCEF,且四邊形ABCD為矩形,四邊形BCEF為直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.
(1)求證:AF∥平面CDE;
(2)求平面ADE與平面BCEF所成銳二面角的余弦值;
(3)求直線EF與平面ADE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an},其前n項和Sn滿足8Sn=an2+4an+3,且a2是a1和a7的等比中項.
(Ⅰ)求數(shù)列{
a
 
n
}
的通項公式;
(Ⅱ)符號[x]表示不超過實數(shù)x的最大整數(shù),記bn=[log2(
an+3
4
)]
,求b1+b2+b3+…b2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是半徑為1的圓上一動點,若該圓的弦AB=
3
,則
AP
AB
的取值范圍是
 

查看答案和解析>>

同步練習冊答案