已知函數(shù)f(x)=log2
1
x+1
,f(a)=3,則a=
 
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)對數(shù)的基本運算,直接解方程即可.
解答: 解:∵函數(shù)f(x)=log2
1
x+1
,f(a)=3,
∴l(xiāng)og2
1
a+1
=3,即
1
a+1
=8,
解得a=-
7
8
,
故答案為-
7
8
點評:本題主要考查對數(shù)的基本運算,利用指數(shù)冪和對數(shù)的基本關(guān)系是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入n的值為7,則輸出的s的值為( 。
A、22B、16C、15D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△AOB中,∠OAB=
π
6
,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角.動點D的斜邊AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當(dāng)D為AB的中點時,求異面直線AO與CD所成角的大;
(Ⅲ)求CD與平面AOB所成角的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,兩條相交線段AB、PQ的四個端點都在拋物線y2=x上,其中,直線AB的方程為x=m,直線PQ的方程為y=
1
2
x+n.
(1)若n=0,∠BAP=∠BAQ,求m的值;
(2)探究:是否存在常數(shù)m,當(dāng)n變化時,恒有∠BAP=∠BAQ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由于國家重點扶持節(jié)能環(huán)保產(chǎn)業(yè),某種節(jié)能產(chǎn)品的市場銷售回暖.某經(jīng)銷商銷售這種產(chǎn)品,年初與生產(chǎn)廠家簽訂進貨合同,約定一年內(nèi)進價為0.1萬元/臺.一年后,實際月銷售量P(臺)與月次x之間存在如圖所示函數(shù)關(guān)系(4月到12月近似符合二次函數(shù)關(guān)系).
(1)寫出P關(guān)于x的函數(shù)關(guān)系式;
(2)如果每臺售價0.15萬元,試求一年中利潤最低的月份,并表示出最低利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-1
,x≥1
1-x
,x<1
,若f(a)+f(0)=3,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
ex+x-a
存在b∈[0,1],使f(f(b))=b,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)(x∈R)是奇函數(shù),函數(shù)g(x)(x∈R)是偶函數(shù),則一定成立的是( 。
A、函數(shù)f[g(x)]是奇函數(shù)
B、函數(shù)g[f(x)]是奇函數(shù)
C、函數(shù)f[f(x)]是奇函數(shù)
D、函數(shù)g[g(x)]是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+aln(x+1)(a為常數(shù))
(Ⅰ)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單凋遞增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)y=f(x)有兩個極值點x1,x2,且x1<x2,求證:0<
f(x2)
x1
<-
1
2
+ln2

查看答案和解析>>

同步練習(xí)冊答案