【題目】某同學(xué)為了計(jì)算函數(shù)圖象與x軸,直線,所圍成形狀A(yù)的面積,采用“隨機(jī)模擬方法”,用計(jì)算機(jī)分別產(chǎn)生10個(gè)在上的均勻隨機(jī)數(shù)和10個(gè)在上的均勻隨機(jī)數(shù),其數(shù)據(jù)記錄為如下表的前兩行.
2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 | |
0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 | |
0.92 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
(1)依據(jù)表格中的數(shù)據(jù)回答,在圖形A內(nèi)的點(diǎn)有多少個(gè),分別是什么?
(2)估算圖形A的面積.
【答案】(1)6個(gè),見(jiàn)解析;(2)
【解析】
(1)根據(jù)圖表數(shù)據(jù)及信息,結(jié)合函數(shù)、x軸,直線,的圖像可得所在圖形A內(nèi)的點(diǎn)有6個(gè);
(2)由隨機(jī)模擬試驗(yàn)概率的求法可得:,運(yùn)算即可得解.
解:(1)根據(jù)題意,畫(huà)出圖形,如圖所示:
由得表格中的數(shù)據(jù)滿足條件的點(diǎn),即在圖形A內(nèi)的點(diǎn)有6個(gè),
分別是,,,,,;
(2)由(1)知,表中10個(gè)點(diǎn)滿足的點(diǎn)有6個(gè),
記A的面積為S,∴,
故估計(jì)圖形A的面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校辦工廠請(qǐng)了30名木工制作200把椅子和100張課桌.已知制作一張課桌與制作一把椅子的工時(shí)數(shù)之比為10:7,問(wèn)30名工人如何分組(一組制作課桌,另一組制作椅子)能使任務(wù)完成最快?請(qǐng)利用二分法的知識(shí)解答.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知斜三棱柱ABC-A1B1C1的側(cè)面A1ACC1與底面ABC垂直,∠ABC=900,BC=2,AC=,且AA1⊥A1C,AA1=A1C.
(Ⅰ)求側(cè)棱A1A與底面ABC所成角的大小;
(Ⅱ)求側(cè)面A1ABB1與底面ABC所成二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是R上的奇函數(shù).
(1)若x∈[,],求f(x)的取值范圍
(2)若對(duì)任意的x1∈[1,,總存在x2∈[,]使得mlog2(﹣6x12+24x1﹣16)﹣f(x2)0(m>0)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中為原點(diǎn),為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓的離心率為,橢圓上動(dòng)點(diǎn)到一個(gè)焦點(diǎn)的距離的最小值為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過(guò)點(diǎn)的動(dòng)直線l與橢圓C交于 A,B 兩點(diǎn),試判斷以AB為直徑的圓是否恒過(guò)定點(diǎn),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓:的離心率,,分別為左、右焦點(diǎn),過(guò)的直線交橢圓于,兩點(diǎn),且的周長(zhǎng)為8.
(1)求橢圓的方程;
(2)設(shè)過(guò)點(diǎn)的直線交橢圓于不同兩點(diǎn),.為橢圓上一點(diǎn),且滿足(為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形所在平面與半圓弧所在平面垂直,是上異于,的點(diǎn).
(1)證明:平面平面;
(2)在線段上是否存在點(diǎn),使得平面?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正三棱柱ABCA1B1C1中,AB=2,AA1=2,由頂點(diǎn)B沿棱柱側(cè)面(經(jīng)過(guò)棱AA1)到達(dá)頂點(diǎn)C1,與AA1的交點(diǎn)記為M.求:
(1)三棱柱側(cè)面展開(kāi)圖的對(duì)角線長(zhǎng);
(2)從B經(jīng)M到C1的最短路線長(zhǎng)及此時(shí)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com