已知為定義在上的可導(dǎo)函數(shù),且對(duì)于恒成立,且為自然對(duì)數(shù)的底,則(  )
A.
B.
C.
D.
A

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005640395447.png" style="vertical-align:middle;" />為定義在上的可導(dǎo)函數(shù),且,則說(shuō)明單調(diào)遞增,同時(shí)當(dāng)x>0時(shí),則
故選A.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系,函數(shù)單調(diào)性的關(guān)系,考查轉(zhuǎn)化、構(gòu)造、計(jì)算能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,則的解析式為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)在原點(diǎn)相切,若函數(shù)的極小值為;
(1)         
(2)求函數(shù)的遞減區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在某服裝批發(fā)市場(chǎng),某種品牌的時(shí)裝當(dāng)季節(jié)將來(lái)臨時(shí),價(jià)格呈上升趨勢(shì),設(shè)這種時(shí)裝開(kāi)始時(shí)定價(jià)為20元,并且每周(7天)漲價(jià)2元,從第6周開(kāi)始保持30元的價(jià)格平穩(wěn)銷(xiāo)售;從第12周開(kāi)始,當(dāng)季節(jié)即將過(guò)去時(shí),平均每周減價(jià)2元,直到第16周周末,該服裝不再銷(xiāo)售。
⑴試建立銷(xiāo)售價(jià)y與周次x之間的函數(shù)關(guān)系式;
⑵若這種時(shí)裝每件進(jìn)價(jià)Z與周次次之間的關(guān)系為Z=,1≤≤16,且為整數(shù),試問(wèn)該服裝第幾周出售時(shí),每件銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某地政府鑒于某種日常食品價(jià)格增長(zhǎng)過(guò)快,欲將這種食品價(jià)格控制在適當(dāng)范圍內(nèi),決定對(duì)這種食品生產(chǎn)廠家提供政府補(bǔ)貼,設(shè)這種食品的市場(chǎng)價(jià)格為元/千克,政府補(bǔ)貼為 元/千克,根據(jù)市場(chǎng)調(diào)查,當(dāng)時(shí),這種食品市場(chǎng)日供應(yīng)量萬(wàn)千克與市場(chǎng)日需量萬(wàn)千克近似地滿(mǎn)足關(guān)系:,。當(dāng)市場(chǎng)價(jià)格稱(chēng)為市場(chǎng)平衡價(jià)格。
(1)將政府補(bǔ)貼表示為市場(chǎng)平衡價(jià)格的函數(shù),并求出函數(shù)的值域;
(2)為使市場(chǎng)平衡價(jià)格不高于每千克20元,政府補(bǔ)貼至少為每千克多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)在區(qū)間()的導(dǎo)函數(shù)在區(qū)間()的導(dǎo)函數(shù),若在區(qū)間()上恒成立,則稱(chēng)函數(shù)在區(qū)間()為凸函數(shù),已知若當(dāng)實(shí)數(shù)滿(mǎn)足時(shí),函數(shù)上為凸函數(shù),則最大值 (    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在函數(shù) 中,若,則的值是              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),若,則實(shí)數(shù)的取值范圍是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù) ,且能表示成一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和.
(1)求的解析式.
(2)命題:函數(shù)在區(qū)間上是增函數(shù);命題:函數(shù)是減函數(shù),如果命題、有且僅有一個(gè)是真命題,求實(shí)數(shù)的取值范圍.
(3)在(2)的條件下,比較的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案