甲、乙兩校參加科普知識大賽,每校派出2人參賽,每人回答一個問題,答對者為本校贏得2分,答錯的零分,假設(shè)甲校派出的2人每人答對的概率都為
3
4
,乙校派出的2人答對的概率分別為
1
2
2
3
,且各人回答正確與否相互沒有影響,用X表示甲校的總得分.
(1)求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(2)事件A:甲、乙兩?偡趾蜑4,事件B:甲?偟梅植恍∮谝倚?偟梅郑驪(AB).
考點:離散型隨機(jī)變量的期望與方差,相互獨(dú)立事件的概率乘法公式
專題:應(yīng)用題,概率與統(tǒng)計
分析:(1)確定隨機(jī)變量X的可能取值,求出相應(yīng)的概率,即可求得隨機(jī)變量X的概率分布列和數(shù)學(xué)期望;
(2)分別求得事件A,B的概率,利用互斥事件的概率公式,可得結(jié)論.
解答: 解:(1)X的取值為0,2,4,則
P(X=0)=
C
0
2
•(
1
4
)2
=
1
16
,P(X=2)=
C
1
2
3
4
1
4
=
3
8
,P(X=4)=
C
2
2
•(
3
4
)2
=
9
16

X的分布列
 X  0  2  4
 P  
1
16
 
3
8
 
9
16
EX=0×
1
16
+2×
3
8
+4×
9
16
=3;
(2)事件AB為如下兩個互斥事件的和事件:
事件C:甲校總得分為4分,乙?偟梅譃0分;事件D:甲校總得分為2分,乙校總得分為2分,
P(C)=
9
16
1
2
1
3
=
3
32
,P(D)=
3
8
•(
1
2
1
3
+
1
2
2
3
)
=
3
16

∴P(AB)=P(C+D)=
3
32
+
3
16
=
9
32
點評:本題考查互斥事件概率公式的運(yùn)用,考查離散型隨機(jī)變量的分布列與數(shù)學(xué)期望,確定變量的取值,求出相應(yīng)的概率是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(sinx)=cos2x,則f(cos15°)的值為( 。
A、
1
2
B、-
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1的方程為x2+(y-2)2=1,定直線l的方程為y=-1.動圓C與圓C1外切,且與直線l相切.
(1)求動圓圓心C的軌跡M的方程;
(2)直線l′與軌跡M相切于第一象限的點P,過點P作直線l′的垂線恰好經(jīng)過點A(0,6),并交軌跡M于異于點P的點Q,求直線PQ的方程及弦|PQ|的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知sinα=
3
2
,α∈(
π
2
,π),求cosα,tanα.
(2)已知cosα=-
4
5
,求sinα,tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點F(-1,0),離心率為
2
2
,函數(shù)f(x)=
1
2x
+
3
4
x,
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(t,0)(t≠0),Q(f(t),0),過P的直線l交橢圓P于A,B兩點,求
QA
QB
的最小值,并求此時的t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+ax-lnx.
(1)若a=1,試求函數(shù)f(x)的單調(diào)區(qū)間;
(2)過坐標(biāo)原點O作曲線y=f(x)的切線,證明:切點的橫坐標(biāo)為1;
(3)令g(x)=
f(x)
ex
,若函數(shù)g(x)在區(qū)間(0,1]上是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=(2x2+3)(3x-1);
(2)y=(
x
-2)2
(3)y=x-sin
x
cos
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的最小值為-2,且它的圖象經(jīng)過點(0,
3
)和(
6
,0).
(1)寫出一個滿足條件的函數(shù)解析式f(x);
(2)若函數(shù)f(x)在(0,
π
8
]上單調(diào)遞增,求此函數(shù)所有可能的解析式;
(3)若函數(shù)f(x)在[0,2]上恰有一個最大值和最小值,求ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2
0
(3-
4x-x2
)dx=
 

查看答案和解析>>

同步練習(xí)冊答案