【題目】已知某單位甲、乙、丙三個部門共有員工60人,為調(diào)查他們的睡眠情況,邐過分層抽樣獲得12名員工每天睡眠的時間,數(shù)據(jù)如下表(單位:小時)

甲部門

6

7

8

乙部門

6

6.5

7

7.5

丙部門

5.5

6

6.5

7

8.5

1)求該單位乙部門的員工人數(shù);

2)若將每天睡眠時間不少于7小時視為睡眠充足,現(xiàn)從該單位任抽取1人,估計抽到的此人為睡眠充足者的概率;

3)從甲部門和乙部門抽出的員工中,各隨機選取一人,甲部門選出的員工記為A,乙部門選出的員工記為B.假設所有員工睡眠的時間相互獨立.A的睡眠時間不少于B的睡眠時間的概率.

【答案】120人;(2;(3

【解析】

(1)運用分層抽樣的特點,計算即可求得;(2)人中抽取一人可得, 每天睡眠時間不少于小時的共有,由古典概型的計算公式即可求得;(3)運用分類討論思想,由古典概率的計算公式即可求出所得.

1)由題意知,抽取的員工共人,其中乙部門抽取.

故乙部門的員工人數(shù)為(或.

2)從該單位中任抽取人,此人為睡眠充足者的概率約為從樣本中抽取人,抽到睡眠充足者的頻率,故所求的概率約為.

3)從甲部門和乙部門抽出的員工中,各隨機選取一人,共有種可能情況;

由題意知,若睡眠時間小時數(shù)為,則的睡眠時間小時數(shù)為,有種情況;

的睡眠時間小時數(shù)為,則的睡眠時間小時數(shù)為之一,有種情況;

的睡眠時間小時數(shù)為,則的睡眠時間小時數(shù)為之一,有種情況;

故所求的概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一對夫婦為了給他們的獨生孩子支付將來上大學的費用,從孩子一周歲生日開始,每年到銀行儲蓄元一年定期,若年利率為保持不變,且每年到期時存款(含利息)自動轉(zhuǎn)為新的一年定期,當孩子18歲生日時不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為  

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形所在平面與等邊所在平面互相垂直,分別為,的中點.

1)求證:平面.

2)試問:在線段上是否存在一點,使得平面平面?若存在,試指出點的位置,并證明你的結論:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的單調(diào)性;

2)若函數(shù)有極大值點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若的定義域為,判斷的單調(diào)性,并加以說明;

2)當時,是否存在,使得在區(qū)間上的值域為,若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的所有零點;

(2),證明函數(shù)不存在極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,,,,分別為的中點,.

(1)求證:平面平面;

(2)設,若平面與平面所成銳二面角,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求證:函數(shù)有唯一零點;

(2)若對任意,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是圓的直徑,在圓上且分別在的兩側,其中,.現(xiàn)將其沿折起使得二面角為直二面角,則下列說法不正確的是(

A.,,在同一個球面上

B.時,三棱錐的體積為

C.是異面直線且不垂直

D.存在一個位置,使得平面平面

查看答案和解析>>

同步練習冊答案