設(shè)數(shù)列{an}的首項(xiàng)a1=1,其前n項(xiàng)和Sn滿(mǎn)足:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,…).
(Ⅰ)求證:數(shù)列{an}為等比數(shù)列;
(Ⅱ)記{an}的公比為f(t),作數(shù)列{bn},使b1=1,bn=f(
1bn-1
) (n=2,3,…)
,求和:b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1
分析:(Ⅰ)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t,a2=
2t+3
3t
=
a2
a1
,又3tSn-(2t+3)Sn-1=3t,3tSn-1-(2t+3)Sn-2=3t(n=3,4,)兩式相減,得:3tan-(2t+3)an-1=0,由此能夠證明數(shù)列{an}為等比數(shù)列.
(Ⅱ)由f(t)=
2t+3
3t
=
2
3
+
1
t
,得bn=f(
1
bn-1
)=
2
3
+bn-1
,所以bn=
2n+1
3
,由此能求出(b1-b3)b2+(b3-b5)b4+…+(b2n-1-b2n+1)b2n之和.
解答:解:(Ⅰ)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t,∴a2=
2t+3
3t
=
a2
a1

又3tSn-(2t+3)Sn-1=3t,3tSn-1-(2t+3)Sn-2=3t(n=3,4,)兩式相減,
得:3tan-(2t+3)an-1=0,
an
an-1
=
2t+3
3t
(n=3,4,)
綜上,數(shù)列{an}為首項(xiàng)為1,公比為
2t+3
3t
的等比數(shù)列
(Ⅱ)由f(t)=
2t+3
3t
=
2
3
+
1
t
,得bn=f(
1
bn-1
)=
2
3
+bn-1
,
所以{bn}是首項(xiàng)為1,,公差為
2
3
的等差數(shù)列,bn=
2n+1
3
b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1=(b1-b3)b2+(b3-b5)b4+…+(b2n-1-b2n+1)b2n=-
4
3
(b2+b4+…+b2n)
=-
4
3
n
2
(
5
3
+
4n+1
3
)=-
4
9
(2n2+3n)
點(diǎn)評(píng):第(Ⅰ)題考查等比數(shù)列的證明方法,證明過(guò)程中要注意迭代法的合理運(yùn)用;第(Ⅱ)題考查數(shù)列前n項(xiàng)和的計(jì)算,解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=
3
2
,前n項(xiàng)和為Sn,且滿(mǎn)足2an+1+Sn=3( n∈N*).
(Ⅰ)求a2及an;
(Ⅱ)求滿(mǎn)足
18
17
S2n
Sn
8
7
的所有n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=a≠
1
4
,且an+1=
1
2
an
(n為偶數(shù))
an+
1
4
(n為奇數(shù))
,n∈N*,記bn=a2n-1-
1
4
,cn=
sinn
|sinn|
bn
,n∈N*
(1)求a2,a3
(2)判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(3)當(dāng)a>
1
4
時(shí),數(shù)列{cn}前n項(xiàng)和為Sn,求Sn最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=
1
2
,且an+1=
2an
1+an
(n∈N*).
(1)求a2,a3,a4;
(2)根據(jù)上述結(jié)果猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•昌平區(qū)二模)設(shè)數(shù)列{an}的首項(xiàng)a1=-
1
2
,前n項(xiàng)和為Sn,且對(duì)任意n,m∈N*都有
Sn
Sm
=
n(3n-5)
m(3m-5)
,數(shù)列{an}中的部分項(xiàng){abk}(k∈N*)成等比數(shù)列,且b1=2,b2=4.
(Ⅰ)求數(shù)列{an}與{bn}與的通項(xiàng)公式;
(Ⅱ)令f(n)=
1
bn+1
,并用x代替n得函數(shù)f(x),設(shè)f(x)的定義域?yàn)镽,記cn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
)(n∈N*)
,求
n
i=1
1
cici+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1=
5
4
,且an+1=
1
2
a
n
,n為偶數(shù)
an+
1
4
,n為奇數(shù)
,記bn=a2n-1-
1
4
,n=1,2,3,…
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)若設(shè)數(shù)列{cn}的前n項(xiàng)和為Sn,cn=nbn,求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案