【題目】某市2013年至2019年新能源汽車y(單位:百臺(tái))的數(shù)據(jù)如下表:
(Ⅰ)求y關(guān)于x的線性回歸方程,并預(yù)測(cè)該市2021年新能源汽車臺(tái)數(shù);
(Ⅱ)該市某公司計(jì)劃投資600臺(tái)“雙槍同充”(兩把充電槍)、“一拖四群充”(四把充電槍)的兩種型號(hào)的直流充電樁.按要求,充電槍的總把數(shù)不少于該市2021年新能源汽車預(yù)測(cè)臺(tái)數(shù),若雙槍同充、一拖四群充的每把充電槍的日利潤(rùn)分別為25元,10元,問(wèn)兩種型號(hào)的充電樁各安裝多少臺(tái)時(shí),才能使日利潤(rùn)最大,求出最大日利潤(rùn).
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為
【答案】(Ⅰ),2100臺(tái);(Ⅱ)雙槍同充安裝150臺(tái),一拖四群充安裝450臺(tái)時(shí),每天的利潤(rùn)最大,最大利潤(rùn)為25500元.
【解析】
(Ⅰ)計(jì)算,根據(jù),可得,進(jìn)一步可得,然后可得方程,最后代值計(jì)算,可得結(jié)果.
(Ⅱ)假設(shè)一拖四群充,雙槍同充分別安裝臺(tái),臺(tái),根據(jù),可得的范圍,然后計(jì)算日利潤(rùn),依據(jù)不等式可得結(jié)果.
(Ⅰ)依題意知,
,
,
,
,
則關(guān)于的線性回歸方程.
令得:,
故預(yù)測(cè)2021年該市新能源汽車大約有2100臺(tái).
(Ⅱ)設(shè)一拖四群充,雙槍同充分別安裝臺(tái),臺(tái),
每天的利潤(rùn)為元,
則,即
所以當(dāng)時(shí),取最大值25500.
故當(dāng)雙槍同充安裝150臺(tái),一拖四群充安裝450臺(tái)時(shí),
每天的利潤(rùn)最大,最大利潤(rùn)為25500元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),若對(duì)于任意的,,有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓: 和拋物線: , 為坐標(biāo)原點(diǎn).
(1)已知直線和圓相切,與拋物線交于兩點(diǎn),且滿足,求直線的方程;
(2)過(guò)拋物線上一點(diǎn)作兩直線和圓相切,且分別交拋物線于兩點(diǎn),若直線的斜率為,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為坐標(biāo)原點(diǎn),橢圓:()過(guò)點(diǎn),其上頂點(diǎn)為,右頂點(diǎn)和右焦點(diǎn)分別為,,且.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)直線交橢圓于,兩點(diǎn)(異于點(diǎn)),,試判定直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知項(xiàng)數(shù)為的數(shù)列滿足如下條件:①;②.若數(shù)列滿足,其中則稱為的“心靈契合數(shù)列”.
(I)數(shù)列1,5,9,11,15是否存在“心靈契合數(shù)列”若存在,寫出其心靈契合數(shù)列,若不存在請(qǐng)說(shuō)明理由;
(II)若為的“心靈契合數(shù)列”,判斷數(shù)列的單調(diào)性,并予以證明;
(Ⅲ)已知數(shù)列存在“心靈契合數(shù)列”,且,,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,S為△ABC的面積,,且A、B、C成等差數(shù)列,則C的大小為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓C:的右準(zhǔn)線方程為x=2,且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成等腰直角三角形.
(1)求橢圓C的方程;
(2)假設(shè)直線l:與橢圓C交于A,B兩點(diǎn).①若A為橢圓的上頂點(diǎn),M為線段AB中點(diǎn),連接OM并延長(zhǎng)交橢圓C于N,并且,求OB的長(zhǎng);②若原點(diǎn)O到直線l的距離為1,并且,當(dāng)時(shí),求△OAB的面積S的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若直線在點(diǎn)處切線方程為,求實(shí)數(shù)的值;
(Ⅱ)若函數(shù)有3個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com