【題目】已知點(diǎn)滿足,則滿足條件的所形成的平面區(qū)域的面積為①________的最大值為②________

【答案】

【解析】

,得的圓心是在以原點(diǎn)為圓心,以1為半徑的圓上運(yùn)動(dòng),進(jìn)而得出點(diǎn)的軌跡是一個(gè)以原點(diǎn)為圓心,以2為半徑的圓面,利用圓的面積公式即可求出點(diǎn)所形成的平面區(qū)域的面積;利用線性規(guī)劃,即可求得的最大值.

設(shè)圓的圓心為,則的坐標(biāo)為,

因?yàn)?/span>

所以圓心是在以原點(diǎn)為圓心,以1為半徑的單位圓上,

所以點(diǎn)在一個(gè)半徑為1的圓上,這個(gè)圓的圓心又在單位圓上運(yùn)動(dòng),(如圖1),

所以點(diǎn)的軌跡是一個(gè)圓面,這個(gè)圓面是以原點(diǎn)為圓心,以2為半徑的圓面(包括邊界,如圖2

,

所以點(diǎn)所形成的平面區(qū)域的面積為.

所以

所以,由線性規(guī)劃知,的最大值為.

;.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;

(2)當(dāng)有兩個(gè)極值點(diǎn)時(shí),若的極大值小于整數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】健身館某項(xiàng)目收費(fèi)標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會(huì)員優(yōu)惠活動(dòng):具體收費(fèi)標(biāo)準(zhǔn)如下:

消費(fèi)次數(shù)

1

2

3

不少于4

收費(fèi)比例

0.95

0.90

0.85

0.80

現(xiàn)隨機(jī)抽取了100位會(huì)員統(tǒng)計(jì)它們的消費(fèi)次數(shù),得到數(shù)據(jù)如下:

消費(fèi)次數(shù)

1

2

3

不少于4

頻數(shù)

60

25

10

5

假設(shè)該項(xiàng)目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:

1)估計(jì)1位會(huì)員至少消費(fèi)兩次的概率

2)某會(huì)員消費(fèi)4次,求這4次消費(fèi)獲得的平均利潤(rùn);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1000多年,在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個(gè)面均為直角三角形的四面體.如圖在塹堵中,.

(1)求證:四棱錐為陽馬;

(2)若,當(dāng)鱉膈體積最大時(shí),求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年春季,某出租汽車公司決定更換一批新的小汽車以代替原來報(bào)廢的出租車,現(xiàn)有采購(gòu)成本分別為萬元/輛和萬元/輛的兩款車型,根據(jù)以往這兩種出租車車型的數(shù)據(jù),得到兩款出租車車型使用壽命頻數(shù)表如下:

1)填寫下表,并判斷是否有的把握認(rèn)為出租車的使用壽命年數(shù)與汽車車型有關(guān)?

2)從的車型中各隨機(jī)抽取車,以表示這車中使用壽命不低于年的車數(shù),求的分布列和數(shù)學(xué)期望;

3)根據(jù)公司要求,采購(gòu)成本由出租公司負(fù)責(zé),平均每輛出租車每年上交公司萬元,其余維修和保險(xiǎn)等費(fèi)用自理.假設(shè)每輛出租車的使用壽命都是整數(shù)年,用頻率估計(jì)每輛出租車使用壽命的概率,分別以這輛出租車所產(chǎn)生的平均利潤(rùn)作為決策依據(jù),如果你是該公司的負(fù)責(zé)人,會(huì)選擇采購(gòu)哪款車型?

附:,.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們打印用的A4紙的長(zhǎng)與寬的比約為,之所以是這個(gè)比值,是因?yàn)榘鸭垙垖?duì)折,得到的新紙的長(zhǎng)與寬之比仍約為,紙張的形狀不變.已知圓柱的母線長(zhǎng)小于底面圓的直徑長(zhǎng)(如圖所示),它的軸截面ABCD為一張A4紙,若點(diǎn)E為上底面圓上弧AB的中點(diǎn),則異面直線DEAB所成的角約為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsinθ2

1M為曲線C1上的動(dòng)點(diǎn),點(diǎn)P在線段OM上,且滿足,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;

2)曲線C2上兩點(diǎn)與點(diǎn)Bρ2,α),求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)據(jù)的收集和整理在當(dāng)今社會(huì)起到了舉足輕重的作用,它用統(tǒng)計(jì)的方法來幫助人們分析以往的行為習(xí)慣,進(jìn)而指導(dǎo)人們接下來的行動(dòng).

某支足球隊(duì)的主教練打算從預(yù)備球員甲、乙兩人中選一人為正式球員,他收集到了甲、乙兩名球員近期5場(chǎng)比賽的傳球成功次數(shù),如下表:

場(chǎng)次

第一場(chǎng)

第二場(chǎng)

第三場(chǎng)

第四場(chǎng)

第五場(chǎng)

28

33

36

38

45

39

31

43

39

33

1)根據(jù)這兩名球員近期5場(chǎng)比賽的傳球成功次數(shù),完成莖葉圖(莖表示十位,葉表示個(gè)位);分別在平面直角坐標(biāo)系中畫出兩名球員的傳球成功次數(shù)的散點(diǎn)圖;

2)求出甲、乙兩名球員近期5場(chǎng)比賽的傳球成功次數(shù)的平均值和方差;

3)主教練根據(jù)球員每場(chǎng)比賽的傳球成功次數(shù)分析出球員在場(chǎng)上的積極程度和技術(shù)水平,同時(shí)根據(jù)多場(chǎng)比賽的數(shù)據(jù)也可以分析出球員的狀態(tài)和潛力.你認(rèn)為主教練應(yīng)選哪位球員?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),證明.

1存在唯一的極小值點(diǎn);

2的極小值點(diǎn)為.

查看答案和解析>>

同步練習(xí)冊(cè)答案