【題目】如圖所示,在中,,,相交于點(diǎn)M.設(shè),.

1)試用向量表示.

2)在線段上取點(diǎn)E,在線段取點(diǎn)F,使過點(diǎn)M.設(shè),其中當(dāng)重合時(shí),,,此時(shí);當(dāng)重合時(shí),,,此時(shí).能否由此得出般結(jié)論:不論在線段上如何變動(dòng),等式恒成立,請(qǐng)說明理由.

【答案】1;(2)見解析.

【解析】

(1)設(shè),根據(jù)三點(diǎn)共線,得一個(gè)等量關(guān)系;再根據(jù)三點(diǎn)共線,得另一個(gè)等量關(guān)系,最后解方程組即得結(jié)果;

2)根據(jù)三點(diǎn)共線,得,再根據(jù)平面向量基本定理得,最后消去即得結(jié)論.

1)不妨設(shè),一方面由三點(diǎn)共線,可知存在,且)使得,則,于是.

,所以,從而.另一方面由三點(diǎn)共線,可知存在)使得,則,于是.

,

所以,

從而.

由①②可得,.

.

2)可以得出結(jié)論.理由:

由于三點(diǎn)共線,所以存在實(shí)數(shù))使得,于是.

,,

所以,

于是,

從而消去即得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義域?yàn)?/span>的偶函數(shù),當(dāng)時(shí),,若關(guān)于的方程有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線、與平面、,下列命題:

①若平行內(nèi)的一條直線,則;②若垂直內(nèi)的兩條直線,則;③若,且,,則;④若,且,則;⑤若,則;⑥若,,,則

其中正確的命題為______(填寫所有正確命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)風(fēng)雨交加的夜里,某水庫(kù)閘房(設(shè)為A)到某指揮部(設(shè)為B)的電話線路有一處發(fā)生了故障.這是一條長(zhǎng)的線路,想要盡快地查出故障所在.如果沿著線路一小段小段地查找,困難很多,每查一小段需要很長(zhǎng)時(shí)間.

(1)維修線路的工人師傅隨身帶著話機(jī),他應(yīng)怎樣工作,才能每查一次,就把待查的線路長(zhǎng)度縮減一半?

(2)要把故障可能發(fā)生的范圍縮小到,最多要查多少次?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)隨著手機(jī)的發(fā)展,微信越來越成為人們交流的一種方式.某機(jī)構(gòu)對(duì)使用微信交流的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)使用微信交流的贊成人數(shù)如下表:

年齡(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(1)若以年齡45歲為分界點(diǎn),由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為使用微信交流的態(tài)度與人的年齡有關(guān).

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成的人數(shù)

不贊成的人數(shù)

合計(jì)

(2)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3紅包獎(jiǎng)勵(lì),求3人中至少有1人年齡在[55,65)的概率.

參考公式:.

參考數(shù)據(jù):

0.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知斜三棱柱ABC-A1B1C1的側(cè)面A1ACC1與底面ABC垂直,∠ABC=900,BC=2,AC=,且AA1⊥A1C,AA1=A1C.

(Ⅰ)求側(cè)棱A1A與底面ABC所成角的大小;

(Ⅱ)求側(cè)面A1ABB1與底面ABC所成二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知五面體ABCDEF中,四邊形CDEF為矩形,,CD2DE2AD2AB4,AC=

1)求證:AB平面ADE;

2)求平面EBC與平面BCF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中為原點(diǎn),為橢圓的離心率.

(1)求橢圓的方程;

(2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求函數(shù)的極值;

(Ⅱ)若,,,使得),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案