【題目】已知函數(shù).
(Ⅰ)當時,求的單調區(qū)間;
(Ⅱ)若函數(shù)與圖象在上有兩個不同的交點,求實數(shù)的取值范圍.
【答案】(Ⅰ)函數(shù)的增區(qū)間為,減區(qū)間;(Ⅱ).
【解析】
(Ⅰ)將代入函數(shù)的解析式,求出該函數(shù)的定義域和導數(shù),然后分別解不等式和可得出函數(shù)的增區(qū)間和減區(qū)間;
(Ⅱ)令得出,問題轉化為:當直線與函數(shù)在區(qū)間上的圖象有兩個交點時,求實數(shù)的取值范圍,并利用導數(shù)分析函數(shù)在區(qū)間上的單調性、極值和端點函數(shù)值,利用數(shù)形結合思想可得出實數(shù)的取值范圍,即可求出實數(shù)的取值范圍.
(Ⅰ)當時,,定義域為,
且.
令,即,解得;
令,即,解得.
因此,函數(shù)的增區(qū)間為,減區(qū)間;
(Ⅱ)由已知得:在有兩個不相等的實數(shù)根.
令,,由得.
當時,,此時,函數(shù)為減函數(shù);
當時,,此時,函數(shù)為增函數(shù).
所以,函數(shù)在處取得極小值,
又,且,
當時,直線與函數(shù)在區(qū)間上的圖象有兩個交點,,
因此,實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】假設關于某設備的使用年限(年)和所支出的年平均維修費用(萬元)(即維修費用之和除以使用年限),有如下的統(tǒng)計資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖;
(2)求關于的線性回歸方程;
(3)估計使用年限為10年時所支出的年平均維修費用是多少?
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的離心率為,頂點為,,,,且.
(1)求橢圓的方程;
(2)若是橢圓上除頂點外的任意一點,直線交軸于點,直線交于點.設的斜率為,的斜率為,試問是否為定值?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設關于某設備的使用年限(年)和所支出的年平均維修費用(萬元)(即維修費用之和除以使用年限),有如下的統(tǒng)計資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖;
(2)求關于的線性回歸方程;
(3)估計使用年限為10年時所支出的年平均維修費用是多少?
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】按照國家質量標準:某種工業(yè)產品的質量指標值落在[100,120)內,則為合格品,否則為不合格品.某企業(yè)有甲乙兩套設備生產這種產品,為了檢測這兩套設備的生產質量情況,隨機從兩套設備生產的大量產品中各抽取了50件產品作為樣本對規(guī)定的質量指標值進行檢測.表1是甲套設備的樣本頻數(shù)分布表,圖1是乙套設備的樣本頻率分布直方圖.
質量指標值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數(shù) | 1 | 4 | 19 | 20 | 5 | 1 |
表1:甲套設備的樣本頻數(shù)分布表
(1)將頻率視為概率,若乙套設備生產了5000件產品,則其中合格品約有多少件?
(2)填寫下面2×2列聯(lián)表,并根據列聯(lián)表判斷是否有95%的把握認為這種產品的質量指標值與甲乙兩套設備的選擇有關:
甲套設備 | 乙套設備 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(3)根據表和圖,對甲、乙兩套設備的優(yōu)劣進行比較.參考公式及數(shù)據:x2=
P(Х2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱臺的上下底面分別是邊長為2和4的正方形, = 4且 ⊥底面,點為的中點.
(Ⅰ)求證: 面 ;
(Ⅱ)在邊上找一點,使∥面,
并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據市場分析,廣饒縣馳中集團某蔬菜加工點,當月產量在10噸至25噸時,月生產總成本(萬元)可以看成月產量(噸)的二次函數(shù).當月產量為10噸時,月總成本為20萬元;當月產量為15噸時,月總成本最低為17.5萬元.
(1)寫出月總成本(萬元)關于月產量(噸)的函數(shù)關系;
(2)已知該產品銷售價為每噸1.6萬元,那么月產量為多少時,可獲最大利潤;
(3)當月產量為多少噸時, 每噸平均成本最低,最低成本是多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知m∈R,命題p:對任意x∈[0,1],不等式x2﹣2x﹣1≥m2﹣3m恒成立,命題q:存在x∈[﹣1,1],使得m≤2x﹣1;
(Ⅰ)若命題p為真命題,求m的取值范圍;
(Ⅱ)若命題q為假命題,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某醫(yī)療器械公司在全國共有個銷售點,總公司每年會根據每個銷售點的年銷量進行評價分析.規(guī)定每個銷售點的年銷售任務為一萬四千臺器械.根據這個銷售點的年銷量繪制出如下的頻率分布直方圖.
(1)完成年銷售任務的銷售點有多少個?
(2)若用分層抽樣的方法從這個銷售點中抽取容量為的樣本,求該五組,,,,,(單位:千臺)中每組分別應抽取的銷售點數(shù)量.
(3)在(2)的條件下,從該樣本中完成年銷售任務的銷售點中隨機選取個,求這兩個銷售點不在同一組的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com