【題目】已知是橢圓上一點(diǎn), 為橢圓的兩焦點(diǎn),且,則面積為( )

A. B. C. D.

【答案】A

【解析】

由橢圓的標(biāo)準(zhǔn)方程可得:c=4,設(shè)|PF1|=t1,|PF2|=t2,根據(jù)橢圓的定義可得:t1+t2=10,再根據(jù)余弦定理可得:t12+t22t1t2=64,再聯(lián)立兩個(gè)方程求出t1t2=12,進(jìn)而結(jié)合三角形的面積公式求出三角形的面積.

由橢圓的標(biāo)準(zhǔn)方程可得:a=5,b=3,

c=4,

設(shè)|PF1|=t1,|PF2|=t2

所以根據(jù)橢圓的定義可得:t1+t2=10①,

在△F1PF2中,∠F1PF2=60°,

所以根據(jù)余弦定理可得:|PF1|2+|PF2|2﹣2|PF1||PF2|cos60°=|F1F2|2=(2c2=64,

整理可得:t12+t22t1t2=64,②

把①兩邊平方得t12+t22+2t1t2=100,③

所以③﹣②得t1t2=12,

F1PF2=3

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域?yàn)?/span>的函數(shù)滿足:,且對(duì)于任意實(shí)數(shù),恒有,當(dāng)時(shí),.

(1)求的值,并證明當(dāng)時(shí),;

(2)判斷函數(shù)上的單調(diào)性并加以證明;

(3)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程:

(1)過點(diǎn)(3,-),離心率e=

(2)中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,實(shí)軸長(zhǎng)和虛軸長(zhǎng)相等,且過點(diǎn)P(4,-).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,頂點(diǎn)在底面上的射影恰為點(diǎn),且

1)證明:平面平面;

2)求棱所成的角的大。

3)若點(diǎn)的中點(diǎn),并求出二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

()若m=1,求證 在(0,+∞)上單調(diào)遞增

()若,試討論g(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)P是拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),記點(diǎn)P到點(diǎn)A(-1,1)的距離與點(diǎn)P到直線x= - 1的距離之和的最小值為M,若B(3,2),記|PB|+|PF|的最小值為N,則M+N= ______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,PA平面ABCD,EB//PA,AB=PA=4,EB=2,F(xiàn)為PD的中點(diǎn).

(1)求證AFPC

(2)BD//平面PEC

(3)求二面角D-PC-E的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某省從121日至224日的新冠肺炎每日新增確診病例變化曲線圖.

若該省從121日至224日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列的前n項(xiàng)和為,則下列說法中正確的是(

A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列

C.數(shù)列的最大項(xiàng)是D.數(shù)列的最大項(xiàng)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,底面為邊長(zhǎng)為2的菱形,平面,,,分別是的中點(diǎn).

(1)判定是否垂直,并說明理由;

(2)若,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案