【題目】求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程:

(1)過點(diǎn)(3,-),離心率e=;

(2)中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,實(shí)軸長和虛軸長相等,且過點(diǎn)P(4,-).

【答案】(1) ; (2).

【解析】

(1)根據(jù)題意,由雙曲線的離心率,得到a=2b,然后分焦點(diǎn)在x軸和焦點(diǎn)在y軸設(shè)出標(biāo)準(zhǔn)方程,將點(diǎn)(3,-)代入計(jì)算即可得雙曲線的方程.(2)由實(shí)軸長和虛軸長相等得a=b,即雙曲線為等軸雙曲線,設(shè)出等軸雙曲線方程,將點(diǎn)坐標(biāo)代入即可得答案.

(1)若雙曲線的焦點(diǎn)在x軸上,設(shè)其標(biāo)準(zhǔn)方程為(a>0,b>0).

因?yàn)殡p曲線過點(diǎn)(3,-),則.①

又e=,故a2=4b2.②

由①②得a2=1,b2,故所求雙曲線的標(biāo)準(zhǔn)方程為.

若雙曲線的焦點(diǎn)在y軸上,設(shè)其標(biāo)準(zhǔn)方程為 (a>0,b>0).

同理可得b2=- ,不符合題意.

綜上可知,所求雙曲線的標(biāo)準(zhǔn)方程為.

(2)由2a=2b得a=b,所以 e=,

所以可設(shè)雙曲線方程為x2-y2=λ(λ≠0).

因?yàn)殡p曲線過點(diǎn)P(4,- ),

所以 16-10=λ,即λ=6.

所以 雙曲線方程為x2-y2=6.

所以 雙曲線的標(biāo)準(zhǔn)方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是偶函數(shù),

(1) 求的值;

(2)當(dāng)時(shí),設(shè),若函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1) 的單調(diào)區(qū)間;

(2) 討論上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】去年年底,某商業(yè)集團(tuán)公司根據(jù)相關(guān)評分細(xì)則,對其所屬25家商業(yè)連鎖店進(jìn)行了考核評估.將各連鎖店的評估分?jǐn)?shù)按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團(tuán)公司依據(jù)評估得分,將這些連鎖店劃分為A,B,C,D四個(gè)等級,等級評定標(biāo)準(zhǔn)如下表所示.

評估得分

[60,70)

[70,80)

[80,90)

[90,100)

評定等級

D

C

B

A

(1)估計(jì)該商業(yè)集團(tuán)各連鎖店評估得分的眾數(shù)和平均數(shù);

(2)從評估分?jǐn)?shù)不小于80分的連鎖店中任選2家介紹營銷經(jīng)驗(yàn),求至少選一家A等級的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是自然對數(shù)的底數(shù)的圖象上存在關(guān)于軸對稱的點(diǎn),則實(shí)數(shù)a的取值范圍是()

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)程為為參數(shù)),設(shè)直線的交點(diǎn)為,當(dāng)變化時(shí)點(diǎn)的軌跡為曲線.

(1)求出曲線的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,點(diǎn)為曲線的動(dòng)點(diǎn),求點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長均為4的三棱柱中, 分別是的中點(diǎn).

(1)求證: 平面

(2)若平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓上一點(diǎn), 為橢圓的兩焦點(diǎn),且,則面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 (,且為常數(shù)).

(1)求的單調(diào)區(qū)間;

(2)若在區(qū)間內(nèi),存在時(shí),使不等式成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案