【題目】已知函數(shù) 是自然對(duì)數(shù)的底數(shù)與的圖象上存在關(guān)于軸對(duì)稱(chēng)的點(diǎn),則實(shí)數(shù)a的取值范圍是()
A. B.
C. D.
【答案】C
【解析】
由已知,得到方程a﹣x3=﹣3lnx﹣a=3lnx﹣x3在[,e]上有解,構(gòu)造函數(shù)f(x)=3lnx﹣x3,求出它的值域,得到﹣a的范圍即可.
由已知,得到方程a﹣x3=﹣3lnx﹣a=3lnx﹣x3在[,e]上有解.
設(shè)f(x)=3lnx﹣x3,求導(dǎo)得:f′(x)=﹣3x2=,
∵≤x≤e,∴f′(x)=0在x=1有唯一的極值點(diǎn),
∵f()=﹣3﹣,f(e)=3﹣e3,f(x)極大值=f(1)=﹣1,
且知f(e)<f(),
故方程﹣a=2lnx﹣x2在上有解等價(jià)于3﹣e3≤﹣a≤﹣1.
從而a的取值范圍為[1,e3﹣3].
故答案為:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為。
(1)求橢圓的方程;
(2)求的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018屆廣東省汕頭市高三上學(xué)期期末】某大型企業(yè)為鼓勵(lì)員工多利用網(wǎng)絡(luò)進(jìn)行營(yíng)銷(xiāo),準(zhǔn)備為員工辦理手機(jī)流量套餐.為了解員工手機(jī)流量使用情況,通過(guò)抽樣,得到100位員工每人手機(jī)月平均使用流量 (單位: )的數(shù)據(jù),其頻率分布直方圖如下:
將頻率視為概率,同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,回答以下問(wèn)題:
(1) 求出的值,并計(jì)算這100位員工每月手機(jī)使用流量的平均值;
(2) 據(jù)了解,某網(wǎng)絡(luò)營(yíng)運(yùn)商推出兩款流量套餐,詳情如下:
流量套餐的規(guī)則是:每月1日收取套餐費(fèi)。如果手機(jī)實(shí)際使用流量超出套餐流量,則需要購(gòu)買(mǎi)流量疊加包,每一個(gè)疊加包(包含的流量)需要10元,可以多次購(gòu)買(mǎi);如果當(dāng)月流量有剩余,將會(huì)被清零.
該企業(yè)準(zhǔn)備訂購(gòu)其中一款流量套餐,每月為員工支付套餐費(fèi),以及購(gòu)買(mǎi)流量疊加包所需月費(fèi)用.若以平均費(fèi)用為決策依據(jù),該企業(yè)訂購(gòu)哪一款套餐更經(jīng)濟(jì)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某翻譯處有8名翻譯,其中有小張等3名英語(yǔ)翻譯,小李等3名日語(yǔ)翻譯,另外2名既能翻譯英語(yǔ)又能翻譯日語(yǔ),現(xiàn)需選取5名翻譯參加翻譯工作,3名翻譯英語(yǔ),2名翻譯日語(yǔ),且小張與小李恰有1人選中,則有____種不同選取方法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), .
(1)若函數(shù)在上單調(diào)遞增,求的取值范圍;
(2)設(shè),點(diǎn)是曲線與的一個(gè)交點(diǎn),且這兩曲線在點(diǎn)處的切線互相垂直,證明:存在唯一的實(shí)數(shù)滿(mǎn)足題意,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程:
(1)過(guò)點(diǎn)(3,-),離心率e=;
(2)中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,實(shí)軸長(zhǎng)和虛軸長(zhǎng)相等,且過(guò)點(diǎn)P(4,-).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論錯(cuò)誤的是 ( )
A. 命題“若,則”的逆否命題為“若,則”
B. 命題“”的否定是
C. 命題“若,則”的逆命題為真命題
D. 命題“若,則且”的否命題是“若,則m≠0或n≠0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù);
(Ⅰ)若m=1,求證: 在(0,+∞)上單調(diào)遞增;
(Ⅱ)若,試討論g(x)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱椎中, 是棱上一點(diǎn),且,底面是邊長(zhǎng)為2的正方形, 為正三角形,且平面平面,平面與棱交于點(diǎn).
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com