如圖所示陰影部分由3個(gè)小方格組成,我們稱這樣的圖形為L形(每次旋轉(zhuǎn)90°仍為L形),那么在由4×5個(gè)小方格構(gòu)成的方格紙上任取三個(gè)小方格,這三個(gè)小方格恰好能構(gòu)成L形的概率是
 
(用分?jǐn)?shù)作答).
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:可知在一個(gè)“田”字型方格中,可作出4個(gè)L形圖案,進(jìn)而可得總的L形圖案的個(gè)數(shù)是12×4=48,由組合數(shù)可得20選3的個(gè)數(shù),由古典概型的概率公式可得.
解答: 解:從20個(gè)方格中任取3個(gè)共有
C
3
20
種方法,
在一個(gè)“田”字型方格中,可作出4個(gè)L形圖案,
而在由4×5方格組成的方格紙上最多可以有12個(gè)“田”字型方格,
則可以畫出的不同位置的L形圖案的個(gè)數(shù)是12×4=48.
∴所求概率P=
48
C
3
20
=
4
95

故答案為:
4
95
點(diǎn)評:本題考查古典概型及其概率公式,得出L形的個(gè)數(shù)是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+a(x-1)2,其中a為常數(shù).
(1)若f(x)在x=2處有極值,求a的值,并說明該極值是極大值還是極小值;
(2)若函數(shù)f(x)的圖象當(dāng)x>1時(shí)總在直線y=x-1的上方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖,圓O的內(nèi)接三角形ABC中,AB=9,AC=6,高AD=
27
5
,則圓O的直徑AE的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x2與其在x=±1處的切線所圍成的圖形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)O重合,極軸Ox與x軸非負(fù)半軸重合,且兩坐標(biāo)系單位長度相同,則直線l:ρcosθ=2與圓C:
x=2cosφ
y=2+2sinφ
(0≤φ<2π)的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=5,BC=3,∠ABC=120°,以點(diǎn)B為圓心,線段BC的長為半徑的半圓交AB所在直線于點(diǎn)E、F,交線段AC于點(diǎn)D,則線段AD的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在[0,2]上的函數(shù)f(x)的圖象過點(diǎn)(1,3)且關(guān)于直線x=1對稱,已知f(x)≥1在定義域內(nèi)恒成立,且對于任意的x,y∈[0,1],若x+y≤1,則f(x+y)≥f(x)+f(y)-1.
(1)判斷函數(shù)f(x)在[0,1]上的單調(diào)性;
(2)證明:f(
1
3n
)≤
2
3n
+1,n∈N*;
(3)當(dāng)x∈[1,2]時(shí),證明:7≤f(x)+6x≤13恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體AC1的棱長為1,點(diǎn)P是面AA1D1D的中心,點(diǎn)Q是面A1B1C1D1的對角線B1D1上一點(diǎn),且PQ∥平面AA1B1B,則線段PQ的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線過點(diǎn)(0,a),其斜率為1,且與圓x2+y2=2相切,則a的值為( 。
A、±
2
B、±2
2
C、±2
D、±4

查看答案和解析>>

同步練習(xí)冊答案