【題目】在直角坐標系中,曲線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)寫出的普通方程及的直角坐標方程;
(2)設點在上,點在上,求的最小值及此時點的直角坐標.
科目:高中數學 來源: 題型:
【題目】如圖甲,在等腰梯形中,,,是的中點.將沿折起,使二面角為,連接,得到四棱錐(如圖乙),為的中點,是棱上一點.
(1)求證:當為的中點時,平面平面;
(2)是否存在一點,使平面與平面所成的銳二面角為,若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在直角坐標系xOy中,圓C的參數方程為 (θ為參數),直線l經過定點P(2,3),傾斜角為.
(Ⅰ)寫出直線l的參數方程和圓C的標準方程;
(Ⅱ)設直線l與圓C相交于A,B兩點,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖①中△ABC 為直角三角形D、E 分別為 AB、AC 的中點,將△ADE 沿 DE 折起使平面 ADE⊥BCED,連接 AB,AC,BE如圖②所示.
(1)在線段AC上找一點P,使EP∥平面ABD,并求出異面直線AB、EP所成的角;
(2)在平面ABD內找一點Q,使PQ⊥平面ABE,并求三棱錐P-ABE的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知多面體的底面是邊長為2的菱形,平面,,且.
(1)證明:平面平面;
(2)若直線與平面所成的角為45°,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(1)當時,討論函數的單調性;
(2)當時,令,是否存在區(qū)間,使得函數在區(qū)間上的值域為,若存在,求實數的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】鳳梨穗龍眼原產廈門,是廈門市的名果,栽培歷史已有100多年.龍眼干的級別按直徑的大小分為四個等級(如下表).
級別 | 三級品 | 二級品 | 一級品 | 特級品 |
某商家為了解某農場一批龍眼干的質量情況,隨機抽取了100個龍眼干作為樣本(直徑分布在區(qū)間),統(tǒng)計得到這些龍眼干的直徑的頻數分布表如下:
頻數 | 1 | 29 | 7 |
用分層抽樣的方法從樣本的一級品和特級品中抽取6個,其中一級品有2個.
(1)求、的值,并估計這批龍眼干中特級品的比例;
(2)已知樣本中的100個龍眼干約500克,該農場有500千克龍眼干待出售,商家提出兩種收購方案:
方案:以60元/千克收購;
方案:以級別分裝收購,每袋100個,特級品40元/袋、一級品30元/袋、二級品20元/袋、三級品10元/袋.
用樣本的頻率分布估計總體分布,哪個方案農場的收益更高?并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com