【題目】已知函數(shù)

1)當(dāng)時,討論函數(shù)的單調(diào)性;

2)當(dāng)時,令,是否存在區(qū)間,使得函數(shù)在區(qū)間上的值域為,若存在,求實數(shù)的取值范圍;若不存在,說明理由.

【答案】1)見解析(2)不存在,見解析

【解析】

1)求出,分三種情況討論的范圍,在定義域范圍內(nèi),分別令求得的范圍,可得函數(shù)的增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;

2)假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域為,則,問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個不相等的實根,進而可得結(jié)果.

1的定義域為,

,

,則恒成立,

單調(diào)遞增,

②若,而,故,

則當(dāng)時,

當(dāng)時,,

單調(diào)遞減,在單調(diào)遞增,

③若,即,同理單調(diào)遞減,

單調(diào)遞增.

2,所以,

,則恒成立,

所以在區(qū)間內(nèi)單調(diào)遞增,

所以恒成立,

所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,

假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間的值域是

,

問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個不相等的實根,

在區(qū)間內(nèi)是否存在兩個不相等的實根,

,則,

設(shè)

則對恒成立,

所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,

恒成立,

所以,

所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增.

所以方程在區(qū)間內(nèi)不存在兩個不相等的實根.

綜上所述,不存在區(qū)間,

使得函數(shù)在區(qū)間上的值域是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為為參數(shù)),在以O為極點,x軸的非負半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為

1)求曲線C的直角坐標(biāo)方程

2)設(shè)直線lx軸交于點P,且與曲線C相交與A、B兩點,若的等比中項,求實數(shù)m的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中e為自然對數(shù)的底數(shù).

1)當(dāng)a0時,求函數(shù)f (x)的單調(diào)減區(qū)間;

2)已知函數(shù)f (x)的導(dǎo)函數(shù)f (x)有三個零點x1x2,x3(x1 x2 x3).①求a的取值范圍;②若m1m2(m1 m2)是函數(shù)f (x)的兩個零點,證明:x1m1x1 1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出的普通方程及的直角坐標(biāo)方程;

(2)設(shè)點上,點上,求的最小值及此時點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若的極小值點,求實數(shù)的取值范圍;

2)若,證明:當(dāng)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校舉行運動會,其中三級跳遠的成績在米以上的進入決賽,把所得的數(shù)據(jù)進行整理后,分成組畫出頻率分布直方圖的一部分(如圖),已知第組的頻數(shù)是.

1)求進入決賽的人數(shù);

2)經(jīng)過多次測試后發(fā)現(xiàn),甲的成績均勻分布在米之間,乙的成績均勻分布在米之間,現(xiàn)甲、乙各跳一次,求甲比乙遠的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)fx),若fx0)=x0,則稱x0fx)的不動點.設(shè)fx)=x3+ax2+bx+3.

1)當(dāng)a0時,

i)求fx)的極值點;

)若存在x0既是fx)的極值點,也是fx)的不動點,求b的值;

2)是否存在ab,使得fx)有兩個極值點,且這兩個極值點均為fx)的不動點?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

I)若曲線存在斜率為-1的切線,求實數(shù)a的取值范圍;

II)求的單調(diào)區(qū)間;

III)設(shè)函數(shù),求證:當(dāng)時, 上存在極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,角所對的邊分別是,的面積為,且,.

(1)求的值;

(2)若,求的值.

查看答案和解析>>

同步練習(xí)冊答案