(本小題12分)

如圖,曲線是以原點(diǎn)為中心,以、為焦點(diǎn)的橢圓的一部分,曲線 是以為頂點(diǎn),以為焦點(diǎn)的拋物線的一部分,是曲線的交點(diǎn),且為鈍角,若,

(I)求曲線所在的橢圓和拋物線的方程;

(II)過作一條與軸不垂直的直線,分別與曲線依次交于、、、四點(diǎn)(如圖),若的中點(diǎn),的中點(diǎn),問是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.

(1)橢圓的方程為,拋物線的方程為(2)是定值3


解析:

(I)設(shè)橢圓方程為,拋物線方程為,過作垂直于軸的直線,即拋物線準(zhǔn)線,作垂直于該準(zhǔn)線,作軸于點(diǎn),則由拋物線的定義得

所以

所以,

,得,

所以橢圓的方程為,拋物線的方程為.    5分

(II)設(shè),,,

由已知得直線的斜率一定存在,故可設(shè)直線的方程為

,得

                      7分

同理,由,得

,                                 9分

所以

,為定值.           12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:瀏陽一中、田中高三年級(jí)2009年下期期末聯(lián)考試題 數(shù)學(xué)試題 題型:解答題

(本小題12分)

如圖,曲線是以原點(diǎn)為中心,以、為焦點(diǎn)的橢圓的一部分,曲線 是以為頂點(diǎn),以為焦點(diǎn)的拋物線的一部分,是曲線的交點(diǎn),且為鈍角,若,
(I)求曲線所在的橢圓和拋物線的方程;
(II)過作一條與軸不垂直的直線,分別與曲線依次交于、、四點(diǎn)(如圖),若的中點(diǎn),的中點(diǎn),問是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年新疆農(nóng)七七師高級(jí)中學(xué)高二下學(xué)期第一學(xué)段考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題12分)
如圖,<…<)是曲線C上的n個(gè)點(diǎn),點(diǎn)在x軸的正半軸上,且⊿是正三角形(是坐標(biāo)原點(diǎn))。

(1)寫出
(2)求出點(diǎn)的橫坐標(biāo)關(guān)于n的表達(dá)式并用數(shù)學(xué)歸納法證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省協(xié)作體高三第三次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題12分)如圖,直三棱柱中, ,中點(diǎn),若規(guī)定主視方向?yàn)榇怪庇谄矫?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082415045464004950/SYS201208241505261419137401_ST.files/image005.png">的方向,則可求得三棱柱左視圖的面積為;

(Ⅰ)求證:;

(Ⅱ)求三棱錐的體積。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省高2013屆春期重點(diǎn)班第一學(xué)月考試數(shù)學(xué)試題 題型:解答題

(本小題12分)如圖,B、A是某海面上位于東西方向相距海里的兩個(gè)觀測(cè)點(diǎn),F(xiàn)位于B點(diǎn)正北方向、A點(diǎn)北偏東方向的C點(diǎn)有一艘輪船發(fā)出求救信號(hào),位于B點(diǎn)北偏西、A點(diǎn)北偏西的D點(diǎn)的救援船立即前往營(yíng)救,其航行速度為海里/小時(shí).問該救援船到達(dá)C點(diǎn)需要多少時(shí)間?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012年福建省四地六校高二第二次月考文科數(shù)學(xué) 題型:解答題

(本小題12分)

如圖4:求的算法的

程序框圖。⑴標(biāo)號(hào)①處填        。標(biāo)號(hào)②處填        。⑵根據(jù)框圖用直到型(UNTIL)語句編寫程序。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案