某地一漁場的水質受到了污染.漁場的工作人員對水質檢測后,決定往水中投放一種藥劑來凈化水質. 已知每投放質量為個單位的藥劑后,經過x天該藥劑在水中釋放的濃度y(毫克/升)滿足y=mf(x),其中,當藥劑在水中釋放的濃度不低于6(毫克/升)時稱為有效凈化;當藥劑在水中釋放的濃度不低于6(毫克/升)且不高于18(毫克/升)時稱為最佳凈化.
(1)如果投放的藥劑質量為m=6,試問漁場的水質達到有效凈化一共可持續(xù)幾天?
(2)如果投放的藥劑質量為m,為了使在8天(從投放藥劑算起包括第8天)之內的漁場的水質達到最佳凈化,試確定應該投放的藥劑質量m的取值范圍.
(1)8天;(2)
解析試題分析:(1)由已知得,經過x天該藥劑在水中釋放的濃度 y=mf(x)是關于自變量的分段函數,漁場的水質達到有效凈化,只需,當m=6時,,相當于知道函數值的取值范圍,求自變量的取值范圍,即可持續(xù)的天數確定;(2)由題意知,為了使在8天(從投放藥劑算起包括第8天)之內的漁場的水質達到最佳凈化,只需在這8天內的每一天均有恒成立即可,轉化為求分段函數求值域問題,使其含于即可.
(1)由題設:投放的藥劑質量為,漁場的水質達到有效凈化
或
或,即:,
所以如果投放的藥劑質量為,自來水達到有效凈化一共可持續(xù)8天 . 6分
(2)由題設:,,∵,
∴,且,
∴且,所以,投放的藥劑質量m的取值范圍為.
考點:分段函數.
科目:高中數學 來源: 題型:解答題
用水清洗一堆蔬菜上殘留的農藥,對用一定量的水清洗一次的效果作如下假定:用一個單位的水可洗掉蔬菜上殘留農藥的,用水越多洗掉的農藥量也越多,但總還有農藥殘留在蔬菜上.設用單位量的水清洗一次以后,蔬菜上殘留的農藥量與本次清洗前殘留的農藥量之比為函數.
⑴試規(guī)定的值,并解釋其實際意義;
⑵試根據假定寫出函數應滿足的條件和具有的性質;
⑶設,現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成兩份后清洗兩次.試問用那種方案清洗后蔬菜上殘留的農藥量比較少?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2個小題滿分8分。
某加油站擬造如圖所示的鐵皮儲油罐(不計厚度,長度單位:米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,(為圓柱的高,為球的半徑,).假設該儲油罐的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為千元,半球形部分每平方米建造費用為3千元.設該儲油罐的建造費用為千元.
(1)寫出關于的函數表達式,并求該函數的定義域;
(2)求該儲油罐的建造費用最小時的的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=lnx+a,其中a為大于零的常數.
(1)若函數f(x)在區(qū)間[1,+∞)內單調遞增,求實數a的取值范圍.
(2)求證:對于任意的n∈N*,且n>1時,都有l(wèi)nn>++…+恒成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2014·鄭州模擬)已知函數f(x)=ex+ax,g(x)=ax-lnx,其中a≤0.
(1)求f(x)的極值.
(2)若存在區(qū)間M,使f(x)和g(x)在區(qū)間M上具有相同的單調性,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了綠化城市,準備在如圖所示的區(qū)域DFEBC內修建一個矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的內部有一文物保護區(qū)不能占用,經測量AB=100m,BC=80m,AE=30m,AF=20m。應如何設計才能使草坪的占地面積最大?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com