設等差數(shù)列{an}的前n項和為Sn,若S3=12,S6=42,則a10+a11+a12=(  )
A.156B.102C.66D.48
C
【思路點撥】根據已知的特點,考慮使用等差數(shù)列的整體性質求解.
解:.根據等差數(shù)列的特點,等差數(shù)列中a1+a2+a3,a4+a5+a6,a7+a8+a9,
a10+a11+a12也成等差數(shù)列,記這個數(shù)列為{bn},根據已知b1=12,b2=42-12=30,故這個數(shù)列的首項是12,公差是18,所以b4=12+3×18=66.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

記Sn是等差數(shù)列{an}前n項的和,Tn是等比數(shù)列{bn}前n項的積,設等差數(shù)列{an}公差d≠0,若對小于2011的正整數(shù)n,都有Sn=S2011-n成立,則推導出a1006=0.設等比數(shù)列{bn}的公比q≠1,若對于小于23的正整數(shù)n,都有Tn=T23-n成立,則(  )
A.b11=1B.b12=1C.b13=1D.b14=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知數(shù)列{an}中,a1=1,a2=2,當整數(shù)n>1時,Sn+1+Sn-1=2(Sn+S1)都成立,則S5=    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

等差數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,滿足2S2=a2(a2+1),且a1=1.
(1)求數(shù)列{an}的通項公式.
(2)設bn=,求數(shù)列{bn}的最小值項.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若{an}為等差數(shù)列,a15=8,a60=20,則a75=    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在數(shù)列{an}中,a1=1,an+1=can+cn+1(2n+1)(n∈N*),其中實數(shù)c≠0.求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列{an}的前n項和Sn=n2-9n,第k項滿足5<ak<8,則k等于(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等差數(shù)列{an}滿足a2=3,Sn-Sn-3=51(n>3),Sn=100,則n的值為(  )
A.8 B.9
C.10 D.11

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于數(shù)列{an},定義數(shù)列{an+1-an}為數(shù)列{an}的“差數(shù)列”,若a1=2,{an}的“差數(shù)列”的通項為2n,則數(shù)列{an}的前n項和Sn=________.

查看答案和解析>>

同步練習冊答案