【題目】已知函數(shù)的圖像如圖所示,關(guān)于有以下5個(gè)結(jié)論:

1;(2,;(3)將圖像上所有點(diǎn)向右平移個(gè)單位得到的圖形所對(duì)應(yīng)的函數(shù)是偶函數(shù);(4)對(duì)于任意實(shí)數(shù)x都有;(5)對(duì)于任意實(shí)數(shù)x都有;其中所有正確結(jié)論的編號(hào)是(

A.(1)(2)(3)B.(1)(2)(4)(5)C.(1)(2)(4)D.(1)(3)(4)(5)

【答案】B

【解析】

由圖象可觀察出的最值和周期,從而求出,將圖像上所有的點(diǎn)向右平移個(gè)單位得到的函數(shù),可判斷(3)的正誤,利用,可判斷(4)(5)的正誤.

由圖可知:

所以,

所以,即

因?yàn)?/span>,所以,所以,故(1)(2)正確

圖像上所有的點(diǎn)向右平移個(gè)單位得到的函數(shù)為

此函數(shù)是奇函數(shù),故(3)錯(cuò)誤

因?yàn)?/span>

所以關(guān)于直線對(duì)稱,即有

(4)正確

因?yàn)?/span>

所以關(guān)于點(diǎn)對(duì)稱,即有

(5)正確

綜上可知:正確的有(1)(2)(4)(5)

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校甲、乙、丙、丁四個(gè)專業(yè)分別有150,150,400,300名學(xué)生.為了解學(xué)生的就業(yè)傾向,用分層抽樣的方法從該校這四個(gè)專業(yè)中抽取60名學(xué)生進(jìn)行調(diào)查,則應(yīng)從丁專業(yè)抽取的學(xué)生人數(shù)為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,設(shè)其定義域上的區(qū)間.

1)判斷該函數(shù)的奇偶性,并證明;

2)當(dāng)時(shí),判斷函數(shù)在區(qū)間)上的單調(diào)性,并證明;

3)當(dāng)時(shí),若存在區(qū)間),使函數(shù)在該區(qū)間上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線

(1)求曲線在點(diǎn)處的切線方程;(2)過點(diǎn)作直線與曲線交于兩點(diǎn),求線段的中點(diǎn)的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,底面ABC,.點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),,.

1)求證:平面BDE;

2)求二面角C-EM-N的正弦值.

3)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,為左、右焦點(diǎn),為短軸端點(diǎn),且,離心率為,為坐標(biāo)原點(diǎn).

(1)求橢圓的方程,

(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個(gè)交點(diǎn),,且滿足?若存在,求出該圓的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查。

I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。

II)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,

1)列出所有可能的抽取結(jié)果;

2)求抽取的2所學(xué)校均為小學(xué)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校一位教師要去某地參加全國數(shù)學(xué)優(yōu)質(zhì)課比賽,已知他乘火車、輪船、汽車、飛機(jī)直接去的概率分別為0.30.1、0.2、0.4.

1)求他乘火車或乘飛機(jī)去的概率;

2)他不乘輪船去的概率;

查看答案和解析>>

同步練習(xí)冊(cè)答案