【題目】是橢圓的兩個(gè)焦點(diǎn),是橢圓上一點(diǎn),當(dāng)時(shí),有.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)橢圓右焦點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn),試問:在鈾上是否存在與不重合的定點(diǎn),使得恒成立?
【答案】(1)1. (2)T(4,0).
【解析】
(1)由題意可得c,結(jié)合橢圓的定義及條件可得,解出a,b即可求出橢圓的方程,
(2)假設(shè)存在符合條件的點(diǎn)T,設(shè)T(t,0),A(x1,y1),B(x2,y2),由題意可將條件轉(zhuǎn)化為直線AT與BT的斜率之和為0,設(shè)直線l的方程為y=k(x﹣2),聯(lián)立直線與橢圓的方程,利用韋達(dá)定理和斜率公式即可求出t=4,當(dāng)直線l的斜率不存在時(shí),顯然滿足kAT+kBT=0,即可得解.
(1)由題知,橢圓的半焦距為c=2,又由橢圓的定義可知,即,∴,∴
∴橢圓的方程為1.
(2)假設(shè)存在符合條件的點(diǎn)T滿足,則x軸為的角平分線,即直線AT與BT的斜率之和為0,
設(shè)T(t,0),A(x1,y1),B(x2,y2),
設(shè)直線l的方程為y=k(x﹣2),
由,
可得(2k2+1)x2﹣8k2x+8k2﹣8=0,
∴x1+x2,x1x2,
由kAT+kBT=0,得0,
∴0,
∴2x1x2﹣(t+2)(x1+x2)+4t=0,
解得t=4,
即T(4,0),
當(dāng)直線l的斜率不存在時(shí),直線l的方程為x=2,
與橢圓的交點(diǎn)坐標(biāo)分別為(2,),(2,),顯然滿足kAT+kBT=0,
∴存在點(diǎn)T(4,0),滿足題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為更好地落實(shí)農(nóng)民工工資保證金制度,南方某市勞動(dòng)保障部門調(diào)查了年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設(shè)這名農(nóng)民工的月工資均在(百元)內(nèi))且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:
(Ⅰ)求,的值;
(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名,則能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?
參考公式及數(shù)據(jù):,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某中學(xué)甲、乙兩班各隨機(jī)抽取 名同學(xué),測(cè)量他們的身高(單位: ),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計(jì)甲、乙兩班同學(xué)的身高情況,則下列結(jié)論正確的是( )
A. 甲班同學(xué)身高的方差較大 B. 甲班同學(xué)身高的平均值較大
C. 甲班同學(xué)身高的中位數(shù)較大 D. 甲班同學(xué)身高在 以上的人數(shù)較多
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為橢圓的左焦點(diǎn),直線,為橢圓上任意一點(diǎn),證明:點(diǎn)到的距離是點(diǎn)到距離的倍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運(yùn)動(dòng)比賽道,賽道的前一部分為曲線段FBC.該曲線段是函數(shù)時(shí)的圖象,且圖象的最高點(diǎn)為B賽道的中間部分為長(zhǎng)千米的直線跑道CD,且CD∥EF;賽道的后一部分是以為圓心的一段圓弧DE.
(1)求的值和∠DOE的大。
(2)若要在圓弧賽道所對(duì)應(yīng)的扇形ODE區(qū)域內(nèi)建一個(gè)“矩形草坪”,矩形的一邊在道路EF上,一個(gè)頂點(diǎn)在半徑OD上,另外一個(gè)頂點(diǎn)P在圓弧DE上,求“矩形草坪”面積的最大值,并求此時(shí)P點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正四棱錐的全面積為2,記正四棱錐的高為h.
(1)用h表示底面邊長(zhǎng),并求正四棱錐體積V的最大值;
(2)當(dāng)V取最大值時(shí),求異面直線AB和PD所成角的大。結(jié)果用反三角函數(shù)值表示
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng) ,求函數(shù)的極小值;
(2)已知函數(shù)在處取得極值,求證:;
(3)求函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙二人去看望高中數(shù)學(xué)張老師,期間他們做了一個(gè)游戲,張老師的生日是月日,張老師把告訴了甲,把告訴了乙,然后張老師列出來(lái)如下10個(gè)日期供選擇: 2月5日,2月7日,2月9日,3月2日,3月7日,5月5日,5月8日,7月2日,7月6日,7月9日.看完日期后,甲說(shuō)“我不知道,但你一定也不知道”,乙聽了甲的話后,說(shuō)“本來(lái)我不知道,但現(xiàn)在我知道了”,甲接著說(shuō),“哦,現(xiàn)在我也知道了”.請(qǐng)問張老師的生日是_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com