【題目】已知三棱柱中,,,,

求證:面;

,在線段上是否存在一點,使二面角的平面角的余弦值為?若存在,確定點的位置;若不存在,說明理由

【答案】(1)見解析;(2)見解析

【解析】

,可得四邊形為菱形,則,又,利用線面垂直的判定可得平面,得到,結(jié)合,即可證明平面,從而可證明面

C為坐標(biāo)原點,分別以CACB所在直線為x,y軸建立空間直角坐標(biāo)系,設(shè)在線段AC上存在一點P,滿足,使得二面角的余弦值為,利用二面角的余弦值為,可求得的值,從而得到答案。

證明:如圖,,四邊形為菱形,

連接,則,又,且,

平面,則,

,即,平面

平面,;

解:以C為坐標(biāo)原點,分別以CACB所在直線為x,y軸建立如圖所示的空間直角坐標(biāo)系,

,,,

0,,2,,0,,0,

設(shè)在線段上存在一點,滿足,使得二面角的余弦值為

0,,,

設(shè)平面的一個法向量為,

,取,得

平面的一個法向量為

,

解得:,或

因為,所以.

故在線段上存在一點,滿足,使二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)銳角的外接圓的半徑為,在內(nèi)取外接圓的同心圓,其半徑為 ,從圓上任取一點,作于點,于點,于點

(1)求證:的面積為定值;

(2)猜想:當(dāng)為任意三角形、同心圓為任意同心圓時,結(jié)論是否成立(不要求證明)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 , .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,D,EF分別為棱PC,ACAB的中點,PA⊥平面ABC,∠ABC90°,ABPA6,BC8,則(

A.三棱錐D-BEF的體積為6

B.直線PB與直線DF垂直

C.平面DEF截三棱錐P-ABC所得的截面面積為12

D.P與點A到平面BDE的距離相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】田忌賽馬是史記中記載的一個故事,說的是齊國將軍田忌經(jīng)常與齊國眾公子賽馬,孫臏發(fā)也們的馬腳力都差不多,都分為上、中、下三等于是孫臏給田忌將軍制定了一個必勝策略:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得公子們許多賭注假設(shè)田忌的各等級馬與某公子的各等級馬進(jìn)行一場比賽獲勝的概率如表所示:

田忌的馬獲勝概率公子的馬

上等馬

中等馬

下等馬

上等馬

1

中等馬

下等馬

0

比賽規(guī)則規(guī)定:一次比由三場賽馬組成,每場由公子和田忌各出一匹馬出騫,結(jié)果只有勝和負(fù)兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.

如果按孫臏的策略比賽一次,求田忌獲勝的概率;

如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將橢圓上每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼囊话,得曲線C,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;

已知點且直線l與曲線C交于A、B兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺)

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測6月份該商場空調(diào)的銷售量;

(2)若該商場的營銷部對空調(diào)進(jìn)行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地擬購買空調(diào)的消費群體十分龐大,經(jīng)過營銷部調(diào)研機構(gòu)對其中的500名顧客進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

有購買意愿對應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對數(shù)的底數(shù),e≈2.718…).

(1)求函數(shù)f(x)的極值;

(2)若函數(shù)y=f(x)g(x)在區(qū)間[1,2]上單調(diào)遞增,求實數(shù)a的取值范圍;

(3)若函數(shù)h(x)=在區(qū)間(0,+∞)上既存在極大值又存在極小值,并且函數(shù)h(x)的極大值小于整數(shù)b,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù):

(I)當(dāng)時,求的最小值;

(II)對于任意的都存在唯一的使得,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案